Issue
Korean Chemical Engineering Research,
Vol.45, No.6, 573-581, 2007
MEA (monoethanolamine) 함침 메조포러스 물질을 이용한 CO2 회수
CO2 Removal using MEA (monoethanolamine) Impregnated Mesoporous Materials
본 연구에서는 MEA(monoethanolamine)를 함침한 메조포러스 물질을 이용하여 이산화탄소를 회수하고자 하였다. 이를 위해 MCM-41, MCM-48 및 SBA-15의 메조포러스 물질을 제조한 후 30, 50, 70 wt%의 MEA로 함침하였다. 함침한 메조포러스 물질의 특성을 평가하기 위하여 XRD, FT-IR, SEM, BET를 이용하였다. 이산화탄소 흡탈착 실험을 수행한 결과, 흡착량은 MCM-41>MCM-48>SBA-15 순으로 나타내었다. 최대 이산화탄소 흡착량은 50 wt% MEA 함침 MCM-41으로써 40 ℃에서 57.1 mg-CO2/gr-sorbent이며, 이는 MCM-41과 비교할 때 8배 높았다. 그리고 20회 반복 흡탈착 실험 결과, 반복 실험에도 일정한 흡착능을 나타내었다.
The present study deals with removal of CO2 using various mesoporous materials impregnated with MEA (monoethanolamine). The mesoporous materials such as MCM-41, MCM-48 and SBA-15 were synthesised and then impregnated with 30, 50 and 70 wt% of MEA, respectively. XRD, FT-IR and SEM were used to evaluate the characterization of those. From the adsorption/desorption experiments for various materials, the adsorption capacity of these materials were found in the order of MCM-41> MCM-48> SBA-15. MCM-41 impregnated with 50 wt% of MEA showed the maximum adsorption capacity of 57.1 mg-CO2/gr-sorbent at 40 ℃. It is nearly 8 times higher than MCM-41 without impregnation of MEA. In the multiple cycle test of 20 times, MCM-41 impregnated with 50 wt% of MEA showed a constant adsorption capacity.
[References]
  1. Sop KY, Shin KH, Appl. Chem., 9(2), 297, 2005
  2. Ruihong Z, Fen G, Yongqi H, Huanqi Z, Microporous Mesoporous Mater., 93, 212, 2006
  3. Macario A, Katovic A, Giordano G, Iucolano F, Caputo D, Microporous Mesoporous Mater., 81, 139, 2005
  4. http://www.cdrs.re.kr/webzine/05/sub_03.html
  5. Park HK, Park HJ, Kang BS, DCER Techinfo part I, 3(7), 100, 2004
  6. Lee IH, Kim SI, Park JY, Ind. Chem., 18(3), 239, 2007
  7. Drage TC, Smith KM, Arenillas A, Blackman JM, Sanpe CE, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem., 51(1), 112, 2006
  8. Kim JM, Physic and Advanced Technology, July/August, 12-17, 2004
  9. Lee JW, Shim WG, Moon H, Microporous Mesoporous Mater., 73, 109, 2004
  10. Lee JW, Cho DL, Shim WG, Moon H, Korean J. Chem. Eng., 21(1), 246, 2004
  11. Cho SH, Jigumoonwha Co., 2006
  12. Jeon HJ, Hanlimwon Co., 2002
  13. Xu X, Song C, Andresen JM, Microporous Mesoporous Mater., 62, 29, 2003
  14. Xu XC, Song CS, Miller BG, Scaroni AW, Fuel Process. Technol., 86(14-15), 1457, 2005
  15. Drage TC, Arenillas A, Smith K, Snape CE, GHGT, 8, 2006
  16. Knofel C, Descarpentries J, Benxaouia A, Zelenak V, Mornet S, Llewellyn PL, Hornebecq V, Microporous Mesoporous Mater., 99, 79, 2007
  17. Jung HJ, Cha JH, Lee TJ, Sur GS, Appl. Chem., 7(2), 471, 2003
  18. Brunauer S, Emmett P, Teller E, Arner. Chem. Soc., 60, 309, 1938
  19. Battett EP, Joynez LG, Halenda PP, J. Amer. Chem. Soc., 73, 373, 1951
  20. Vinu A, Mori T, Ariga K, Science Tech.. Adv. Mater., 7, 753, 2006
  21. Hiyoshi N, Yogo K, Yashima T, Microporous Mesoporous Mater., 84, 357, 2005