Issue
Korean Chemical Engineering Research,
Vol.45, No.6, 554-559, 2007
Ce0.8Zr0.2O2 촉매 상에서 메탄올과 이산화탄소를 이용한 디메틸카보네이트 직접 합성에 대한 첨가제의 영향
Effect of the Additives on Direct Dimethyl Carbonate Synthesis using Methanol and Carbon Dioxide over Ce0.8Zr0.2O2 Catalyst
본 연구에서는 메탄올과 이산화탄소를 이용한 디메틸카보네이트(dimethyl carbonate, 이하 DMC) 의 직접 합성에서 수율 증대를 위하여 주입된 다양한 첨가제의 영향을 살펴보았다. 그리고 첨가제의 주입과 동시에 반응조건을 달리하여 얻어진 반응특성을 살펴봄으로써 필요한 반응조건의 최적화를 살펴보았다. Citric complexation method에 의해 제조된 복합금속산화물 Ce1-xZrxO2 촉매들 가운데, 가장 높은 성능을 지니고 있는 Ce0.8Zr0.2O2 촉매가 DMC 합성에서 사용되었다. 황산염(sulfate) 계열, 질산염(nitrate) 계열, 인산염(phosphate) 계열 및 제올라이트 등의 다양한 첨가제가 사용된 가운데 DMC 생성량의 변화가 관찰되었다. 그 결과, -SO4를 지니는 황산염 계열의 K2SO4 및 Na2SO4 등의 첨가제가 Ce0.8Zr0.2O2 촉매와 함께 사용됨으로써 가장 높은 DMC 생성량을 얻었다. 기존의 첨가제 없이 Ce0.8Zr0.2O2 촉매가 사용된 경우, 약 0.6 mmol의 DMC 생성량을 얻을 수 있었으며, K2SO4 첨가제가 동시에 주입된 경우 가장 높은 0.91 mmol의 향상된 DMC 생성량을 얻었다.
In order to improve the reactivity for the direct synthesis of dimethyl carbonate (DMC) using methanol and carbon dioxide, the various additives were used in the DMC synthesis using Ce0.8Zr0.2O2 catalyst, and then effect of the additives was investigated. The various additives were molecular sieves 3A and the compounds having the various functional groups such as sulfate, carbonate, nitrate and phosphate. As a result, the compound such as K2SO4 and Na2SO4 having sulfate group were the most effective additive among the various additives. When K2SO4 was used as an additive in the direct synthesis of DMC, the amount of DMC was about 0.91 mmol, which was the highest mount of DMC among using only-Ce0.8Zr0.2O2 catalyst and the various additives.
[References]
  1. Pacheco MA, Marshall CL, Energy Fuels, 11(1), 2, 1997
  2. Jung KT, Bell AT, J. Catal., 204(2), 339, 2001
  3. Tomishige K, Kunimori K, Appl. Catal. A: Gen., 237(1-2), 103, 2002
  4. Bertilsson F, Karlsson HT, Energy Conv. Manag., 37(12), 1733, 1996
  5. Ono Y, Catal. Today, 35(1-2), 15, 1997
  6. Wu XL, Meng YZ, Xiao M, Lu YX, J. Mol. Catal. A-Chem., 249(1-2), 93, 2006
  7. Fang SN, Fujimoto K, Appl. Catal. A: Gen., 142(1), L1, 1996
  8. Wu XL, Xiao M, Meng YZ, Lu YX, J. Mol. Catal. A-Chem., 238(1-2), 158, 2005
  9. Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L, Richard P, Turunen H, Catal. Today, 115(1-4), 80, 2006
  10. Yoshida Y, Arai Y, Kado S, Kunimori K, Tomishige K, Catal. Today, 115(1-4), 95, 2006
  11. Allaoui LA, Aouissi A, J. Mol. Catal. A-Chem., 259(1-2), 281, 2006
  12. Slsaecs N, O’Sullivan B, Tetrahedron, 55(40), 11949, 1999
  13. Pinero R, Garcia J, Sokolova M, Cocero MJ, J. Chem. Thermodyn., 39(4), 536, 2007
  14. Zhao TS, Han YZ, Sun YH, Fuel Process. Technol., 62(2-3), 187, 2000
  15. Sakakura T, Choi JC, Saito Y, Sako T, Polyhedron, 19(5), 573, 2000
  16. Jiang CJ, Guo YH, Wang CG, Hu CW, Wu Y, Wang EB, Appl. Catal. A: Gen., 256(1-2), 203, 2003
  17. Chin CS, Shin D, Won G, Ryu J, Kim HS, Lee BG, J. Mol. Catal. A-Chem., 160(2), 315, 2000
  18. Seo ES, Park NK, Chang WC, Lee TJ, Lee BG, HWAHAK KONGHAK, 40(1), 9, 2002
  19. Seo ES, Park NK, Chang WC, Lee TJ, Lee BG, J. Korean Ind. Eng. Chem., 13(3), 241, 2002
  20. Reddy BM, Sreekanth PM, Lakshmanan P, Khan A, J. Molecular Chemistry A: Chemical, 244(1-2), 1, 2006
  21. Reddy BM, Patil MK, Lakshmanan P, J. Mol. Catal. A-Chem., 256(1-2), 290, 2006
  22. Zaki MI, Hasan MA, Pasupulety L, Langmuir, 17(3), 768, 2001
  23. Rodriguez JA, Wang X, Liu G, Hansona JC, Hrbek J, Peden CHF, Iglesias-Juez A, Fernandez-Garcia M, J. Mol. Catal. A-Chem., 228(1-2), 11, 2005