Issue
Korean Chemical Engineering Research,
Vol.45, No.5, 523-528, 2007
응집-UF 막 공정의 적용시 금속염 응집제가 막오염에 미치는 영향
Effect of Metal Salt Coagulant on Membrane Fouling During Coagulation-UF Membrane Process
본 연구에서는 막분리 공정의 전처리 공정으로 응집 공정을 적용할 경우 응집 공정의 적용 가능성을 평가하고자 하였으며 사용된 응집제 종류에 따라 발생하는 금속염이 막오염에 미치는 영향을 파악하고자 하였다. 응집제 종류에 따른 투과 flux 실험결과 응집 공정을 전처리 공정으로 적용할 경우 막의 재질에 상관없이 응집효율이 우수한 PACl의 경우 투과 flux가 높게 나타났으며 전처리 응집 공정의 적용시 급속교반+UF 공정에 비하여 급속-완속교반+UF 공정의 경우 투과 flux 감소율이 낮게 나타났다. 급속교반 공정에 응집제를 첨가할 경우 다양한 형태의 가수분해종이 형성되어졌으며 금속염 응집제가 막오염에 미치는 영향을 살펴보기 위하여 시간에 따른 투과 flux 실험결과 금속염 응집제에 의한 막오염이 발생하였으며 응집제 주입량이 증가할수록 침전물 형태의 금속염 가수분해종의 발생이 증가하여 투과 flux 감소가 크게 나타났다.
The objectives of this research are to investigate the mechanism of coagulation affecting UF, find out the effect of metal salt coagulant on membrane fouling. Either rapid mixing + UF or slow mixing + UF process caused much less flux decline. For PACl coagulant, the rate of flux decline was reduced for both hydrophilic and hydrophobic membrane than alum due to higher formation of flocs. In addition, the rate of flux decline for the hydrophobic membrane was significantly greater than for the hydrophilic membrane, regardless of pretreatment conditions. In general, Coagulation pretreatment significantly reduced the fouling of the hydrophilic membrane, but did little decrease the flux reduction of the hydrophobic membrane. When an Al(III) salt is added to water, monomers, polymers, or solid precipitates may form. Different Al(III) coagulants (alum and PACl) show to have different Al species distribution over a rapid mixing condition. During the rapid mixing period, for alum, formation of dissolved Al(III) (monomer and polymer) increases, but for PACl, precipitates of Al(OH)3(s) increases rapidly. This experimental results pointed out that precipitates of Al(OH)3(s) rather than dissolved Al(III) formation is major factor affecting flux decline for the membrane.
[References]
  1. Fan L, Harris JL, Roddick FA, Brooker NC, Water Res., 35(18), 4455, 2001
  2. Laine JM, Clark MM, Mallevialle J, J. AWWA, 90, 82, 1990
  3. Turcaud LV, Wiesner MR, Bottero JY, J. Membr. Sci., 52(2), 173, 1990
  4. Fu LF, Dempsey BA, Proc. AWWA Membrane Technology Conference, New Orleans, 1043-1058, 1997
  5. Song YK, Jung CW, Hwangbo BH, Sohn IS, Korean Chem. Eng. Res., 44(5), 547, 2006
  6. Nystrom M, Kaipia L, Luque S, J. Membr. Sci., 98(3), 249, 1995
  7. Wang SL, Wang MK, Tzou YM, Colloids Surf. A: Physicochem. Eng. Asp., 231(1), 143, 2003
  8. Parker DR, Bertsch PM, Environ. Sci. & Tech., 26(5), 914, 1992
  9. Akitt JW, Greenwood NN, Khandelwal BL, Lester GD, J. Chem. Soc.-Dalton Trans., 604, 1972
  10. Smith RM, Robert F, in: Gould (Ed.), Relation Among Equilibrium and Nonequilibrium Aqueous Species of Aluminum Hydroxy Complexes in Nonequilibrium Systems: Natural Water Chemistry, ACS Advances in Chemistry Series, 106, American Chemical Society, Washington, DC, 250-279, 1971
  11. Rebhun M, Lulie M, Water Sci. Technol., 27(11), 1, 1993
  12. Kang LS, Han SW, Jung CW, Korean J. Chem. Eng., 18(6), 965, 2001
  13. Dempsey BA, Reaction Between Fulvic Acids and Aluminum, In Aquatic Humic Substances; Influence on the Fate and Treatment of Pollutant, ACS, 1989
  14. Lo B, Waite TD, Structure of Ferric Oxyhydroxide Aggregates-a Light Scattering Study, Chemeca ‘98 Conference, Port Douglas, September, CD Rom, 1998
  15. Letterman RD, Filtration Strategies to Meet the Surface Water Treatment Rule, Denver, CO; American Water Works Association, 1991