Issue
Korean Chemical Engineering Research,
Vol.45, No.5, 493-499, 2007
Particle Replication In Non-Wetting Templates (PRINT) 방법을 이용한 약물 및 유전자 전달체의 제작
Fabrication of Non Viral Vector for Drug and Gene Delivery using Particle Replication In Non-Wetting Templates (PRINT) Technique
본 연구에서는 UV photo-lithography 방식의 particle replication in non-wetting templates(PRINT) 법을 이용하여 약물 전달에 운반체로 사용되는 3 μm×3 μm×2 μm 사이즈의 균일한 고분자 하이드로젤 입자를 제조하였다. 몰드(mold)와 기재(substrate)는 PRINT 방식을 통하여 탄성을 지닌 perfluoropolyethers(PFPE)로 제작하였으며 이를 반복적으로 사용할 수 있도록 하였다. 제작된 입자는 점착성이 있는 수용성 고분자를 이용하여 회수하였다. 입자의 주요 성분은 생분해성 고분자인 poly(ethylene glycol) diacrylate(PEG-diA)이며, 세포 uptake에 적합하도록 aminoethylacrylate(AEM)와 2-acryloxyethyltrimethyl ammonium chloride(AETMAC)를 첨가하였다. 본 연구를 통해 균일하고 원하는 크기의 생체분해성 고분자 입자를 제작하는 PRINT 기술이 약물 전달 및 유전자 전달에 필요한 수송체인 비바이럴 벡터를 제작하기 위한 효과적인 기술임을 제시하였다.
Polymeric hydrogel particles were fabricated to demonstrate the scale-up possibilities with the Particle Replication In Non-wetting Templates (PRINT) process. A permanently etched, specifically designed master was made on a silicon wafer using conventional photolithography, then reactive ion etching. The master and substrate were used repeatedly to make a large number of identical elastomeric perfluoropolyethers (PFPE) replica molds. The PFPE replica molds were used to fabricate and harvest individual, monodisperse micron-sized particles using the PRINT process. A water-soluble polymer adhesive was used as a sacrificial layer for harvesting particles. Particles were composed of biodegradable poly (ethylene glycol) diacrylate (PEG-diA), and aminoethylacrylate (AEM) and 2-acryloxyethyltrimethyl ammonium chloride (AETMAC) were added to them for improving the uptake of the cells. This study suggested PRINT used to produce the uniformed and shape specific biodegradable polymer is the effective technique for the non viral vector for the drug and the gene delivery.
[References]
  1. Niidome T, Huang L, Gene Ther., 9(24), 1647, 2002
  2. Herweijer H, Wolff JA, Gene Ther., 10(6), 453, 2002
  3. Mulligan RC, Science, 260(5110), 926, 1993
  4. Kay MA, Glorioso JC, Naldini L, Nat. Med., 7, 33, 2001
  5. Verma IM, Somia N, Nature, 389(6648), 239, 1997
  6. Nishikawa M, Huang L, Hum. Gene Ther., 12(8), 861, 2001
  7. Lu QL, Gharios GB, Partridge TA, Gene Ther., 10(2), 131, 2003
  8. Xia Y, Whitesides GM, Angew. Chem.-Int. Edit., 37(5), 550, 1998
  9. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE, Ann. Review of Biomedical Engineering, 3, 335, 2001
  10. Schmid H, Michel B, Macromolecules, 33(8), 3042, 2000
  11. Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM, J. Am. Chem. Soc., 127(28), 10096, 2005
  12. Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM, J. Am. Chem. Soc., 126(8), 2322, 2004
  13. Park JY, Maynor BW, Pandya A, Gratton SE, Desimone JM, NSF-STC fall meeting, UNC, 18-19, 2005
  14. Larken EE, Christopher MW, Maynor BW, Rolland JP, Denison MG, Gratton SE, Park JY, Ashish PA, Elizabeth EL, Juliano RL, Hahn KM, Desimone JM, SPIE-The International Society for Optical Engineering, Advances in Resist Technology and Processing, 32-34, 2006