Issue
Korean Chemical Engineering Research,
Vol.45, No.5, 466-472, 2007
저유전체 고분자 접착 물질을 이용한 웨이퍼 본딩을 포함하는 웨이퍼 레벨 3차원 집적회로 구현에 관한 연구
A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive
웨이퍼 레벨(WL) 3차원(3D) 집적을 구현하기 위해 저유전체 고분자를 본딩 접착제로 이용한 웨이퍼 본딩과, 적층된 웨이퍼간 전기배선 형성을 위해 구리 다마신(damascene) 공정을 사용하는 방법을 소개한다. 이러한 방법을 이용하여 웨이퍼 레벨 3차원 칩의 특성 평가를 위해 적층된 웨이퍼간 3차원 비아(via) 고리 구조를 제작하고, 그 구조의 기계적, 전기적 특성을 연속적으로 연결된 서로 다른 크기의 비아를 통해 평가하였다. 또한, 웨이퍼간 적층을 위해 필수적인 저유전체 고분자 수지를 이용한 웨이퍼 본딩 공정의 다음과 같은 특성 평가를 수행하였다. (1) 광학 검사에 의한 본딩된 영역의 정도 평가, (2) 면도날(razor blade) 시험에 의한 본딩된 웨이퍼들의 정성적인 본딩 결합력 평가, (3) 4-점 굽힘시험(four point bending test)에 의한 본딩된 웨이퍼들의 정량적인 본딩 결합력 평가. 본 연구를 위해 4가지의 서로 다른 저유전체 고분자인 benzocyclobutene(BCB), Flare, methylsilsesquioxane(MSSQ) 그리고 parylene-N을 선정하여 웨이퍼 본딩용 수지에 대한 적합성을 검토하였고, 상기 평가 과정을 거쳐 BCB와 Flare를 1차적인 본딩용 수지로 선정하였다. 한편 BCB와 Flare를 비교해 본 결과, Flare를 이용하여 본딩된 웨이퍼들이 BCB를 이용하여 본딩된 웨이퍼보다 더 높은 본딩 결합력을 보여주지만, BCB를 이용해 본딩된 웨이퍼들은 여전히 칩 back-end-of-the-line (BEOL) 공정조건에 부합되는 본딩 결합력을 가지는 동시에 동공이 거의 없는 100%에 가까운 본딩 영역을 재현성있게 보여주기 때문에 본 연구에서는 BCB가 본딩용 수지로 더 적합하다고 판단하였다.
A technology platform for wafer-level three-dimensional integration circuits (3D-ICs) is presented, and that uses wafer bonding with low-k polymeric adhesives and Cu damascene inter-wafer interconnects. In this work, one of such technical platforms is explained and characterized using a test vehicle of inter-wafer 3D via-chain structures. Electrical and mechanical characterizations of the structure are performed using continuously connected 3D via-chains. Evaluation results of the wafer bonding, which is a necessary process for stacking the wafers and uses low-k dielectrics as polymeric adhesive, are also presented through the wafer bonding between a glass wafer and a silicon wafer. After wafer bonding, three evaluations are conducted; (1) the fraction of bonded area is measured through the optical inspection, (2) the qualitative bond strength test to inspect the separation of the bonded wafers is taken by a razor blade, and (3) the quantitative bond strength is measured by a four point bending. To date, benzocyclobutene (BCB), FlareTM, methylsilsesquioxane (MSSQ) and parylene-N were considered as bonding adhesives. Of the candidates, BCB and FlareTM were determined as adhesives after screening tests. By comparing BCB and FlareTM, it was deduced that BCB is better as a baseline adhesive. It was because although wafer pairs bonded using FlareTM has a higher bond strength than those using BCB, wafer pairs bonded using BCB is still higher than that at the interface between Cu and porous low-k interlevel dielectrics (ILD), indicating almost 100% of bonded area routinely.
[References]
  1. International Technology Roadmap for Semiconductors (ITRS): 2003 Edition(Semiaconductor Industry Association, 2003)
  2. Davis JA, Venkatesan R, Kaloyeros A, Beylansky M, Souri SJ, Banerjee K, Saraswat KC, Rahman A, Reif R, Meindl JD, Proc. IEEE, 89(3), 305, 2001
  3. Lu JQ, Kwon Y, Rajagopalan G, Gupta M, McMahon J, Lee KW, Kraft RP, Jindal A, McDonald JF, Cale TS, Gutmann RJ, Xu B, Eisenbraun E, Castracane J, Kaloyeros A, 2002 IEEE Int’l Interconnect Technol. Conf., 78, 2002
  4. Guarini KW, Topol AW, Ieong M, Yu R, Shi L, Newport MR, Frank DJ, Singh DV, Cohen GM, Nitta SV, Boyd DC, O’Neil PA, Tempest SL, Pogge HB, Purushothaman S, Haensch WE, Dig. Int’l Elect. Dev. Meeting, 943, 2002
  5. Rahman A, Fan A, Chung J, Reif R, 2000 IEEE Int’l Interconnect Technol. Conf., 18, 2000
  6. Souri SJ, Saraswat KC, 2000 IEEE Int’l Interconnect Technol. Conf., 24, 1999
  7. Lee KW, Nakamura T, Ono T, Yamada Y, Mizukusa T, Park KT, Kurino H, Koyanagi M, Dig. Int’l Elect. Dev. Meeting, 165, 2000
  8. Kwon Y, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 2003
  9. Kwon Y, Jindal A, McMahon JJ, Lu JQ, Gutmann RJ, Cale TS, Mater. Res. Soc. Symp. Proc., 766, 27, 2003
  10. Lu JQ, Kwon Y, Kraft RP, Gutmann RJ, McDonald JF, Cale TS, 2001 IEEE Int’l Interconnect Technol. Conf., 219, 2001
  11. Kwon Y, Seok J, Lu JQ, Cale TS, Gutmann RJ, J. Electrochem. Soc., 152(4), G286, 2005
  12. Kwon Y, Lu JQ, Kraft RP, Gutmann RJ, McDonald JF, Cale TS, Mater. Res. Soc. Symp. Proc., 710, 231, 2002
  13. De Gennes PG, J. Chem. Phys., 55(4), 572, 1971
  14. Sperling LH, Wiley Interscience, 1997
  15. Snodgrass JM, Pantelidis D, Jenkins ML, Bravman JC, Dauskardt RH, Acta Metall., 50(9), 2395, 2002
  16. Charalambides PG, Lund J, Evans AG, McMeeking RM, J. Appl. Mech., 56(1), 77, 1989
  17. Chua CT, Sarkar G, Hu X, J. Electrochem. Soc., 145(11), 4007, 1998
  18. Vrtis RN, Heap KA, Burgoyne WF, Robeson LM, Mater. Res. Soc. Symp. Proc., 443, 171, 1997
  19. Garrou PE, Heistand RH, Dibbs MG, Mainal TA, Mohler CE, Stokich TM, Townsend PH, Adema GM, Berry MJ, Turlik I, Hybrids Manufact. Technol., 16(1), 46, 1993