Issue
Korean Chemical Engineering Research,
Vol.45, No.5, 415-423, 2007
광화학적 수소제조를 위한 나노복합 광촉매의 설계
Design of Nanocomposite Photocatalysts for Solar Hydrogen Production
광촉매에 의한 수소제조는 재생 가능한 물과 태양에너지로부터 직접적으로 수소에너지를 생산할 수 있는 가장 유망한 기술이다. 지난 수십 년간의 연구에도 불구하고, 고효율과 내구성을 가지는 새로운 가시광 광촉매 소재를 개발하는 것에는 여전히 많은 기술적인 과제가 남아있다. 본 총설에서는 광화학적 수소제조를 위한 새로운 광촉매 소재 개발에 있어서 나노복합 소재의 적용에 대하여 논의하고자 한다. 잘 알려진 소재와 기능의 합리적인 조합과 변형은 가시광 조사 하에 높은 광활성을 가지는 우수한 광촉매를 얻기 위한 효과적인 방법이다.
Photocatalytic water splitting (PWS) is the most promising technology to produce H2 energy directly from renewable water and solar light. In spite of the remarkable progress made in the last decade, there are still many technical challenges remaining particularly in finding new photocatalytic materials with high efficiency and durability. This article discusses the application of nanocomposite materials in search of new photocatalytic materials for solar hydrogen production from water. It has been demonstrated that smart combination and modification of known materials and functions could be fruitful approach for the purpose.
[References]
  1. Fujishima A, Honda K, Nature, 238(5358), 37, 1972
  2. Domen K, Kudo A, Onishi T, J. Catal., 102(1), 92, 1986
  3. Inoue Y, Asai Y, Sato K, J. Chem. Soc.-Faraday Trans., 90(5), 797, 1994
  4. Kudo A, Kato H, Chem. Lett., 20(9), 867, 1997
  5. Sakata T, in Serpone, N. and Pelizzetti, E.(Ed.), Photocatalysis: Fundamentals and Applications, Wiley, New York, 1989
  6. Naman SA, Ahwi SM, Al-Emara K, J. Hydrol. Eng., 11(1), 33, 1986
  7. Tambwekar SV, Subrahmanyam M, J. Hydrol. Eng., 22(10-11), 959, 1997
  8. Jang JS, Li W, Oh SH, Lee JS, Chem. Phys. Lett., 425(4-6), 278, 2006
  9. Koca M, Sahin M, Int. J. Hydrog. Energy, 27(4), 363, 2002
  10. Wu J, Lin JM, Shu YB, Sato T, J. Mater. Chem., 11(12), 3343, 2001
  11. Frank AJ, Honda K, J. Phys. Chem., 86(11), 1933, 1982
  12. Lee JS, Catal. Survey from Asia, 9(4), 217, 2004
  13. Abe R, Sayama K, Sugihara H, J. Phys. Chem. B, 109(33), 16052, 2005
  14. Abe R, Sayama K, Domen K, Arakawa H, Chem. Phys. Lett., 344(3-4), 339, 2001
  15. Sayama K, Mukasa K, Abe R, Abe Y, Arakawa H, Chem. Commun.(23), 2419, 2001
  16. Wu J, Uchida S, Fujishiro Y, Yin S, Sata T, Int. J. Inorg. Mater., 1(3-4), 253, 1999
  17. Jang JS, Kim HG, Reddy VR, Bae SW, Ji SM, Lee JS, J. Catal., 231(1), 213, 2005
  18. Barbeni, M., Pelizzetti E, Borgarello E, Serpone N, Graetzel M, Balducci L, Visca M, Int. J. Hydrog. Energy, 10(4), 249, 1985
  19. Nojik AJ, Appl. Phys. Lett., 29(3), 150, 1976
  20. Khaselev O, Turner JA, Science, 280(5362), 425, 1998
  21. Kim HG, Hwang DW, Lee JS, J. Am. Chem. Soc., 126(29), 8912, 2004
  22. Matsumoto Y, J. Solid State Chem., 126(2), 227, 1996
  23. Kim HG, Borse PH, Choi W, Lee JS, Angew. Chem.-Int. Edit., 44(29), 4585, 2005
  24. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293(5528), 269, 2001
  25. Kim HG, Jeong ED, Borse PH, Jeon S, Yong K, Lee JS, Li W, Oh SH, Appl. Phys. Lett., 064103/01-03, 89(6), 2006
  26. Hwang DW, Kim J, Park TJ, Lee JS, Catal. Lett., 80(1-2), 53, 2002
  27. Kojima I, Kurahashi M, J. Electron Spectrosc. Relat. Phenom., 42(2), 177, 1987
  28. White JR, Bard AJ, J. Phys. Chem., 89(10), 1947, 1985
  29. Roy AM, De GC, Sasmal N, Bhattacharyya SS, Int. J. Hydrog. Energy, 20(8), 627, 1995
  30. Linkous CA, Muradov NZ, Ramser SN, Int. J. Hydrog. Energy, 20(9), 701, 1995
  31. Jang JS, Choi SH, Park H, Choi W, Lee JS, J. Nanosci. Nanotechnol., 6(11), 3642, 2006
  32. Zou Z, Ye J, Sayama K, Arakawa H, Nature, 414(6864), 625, 2001
  33. Kato H, Kudo A, J. Phys. Chem. B, 106(19), 5029, 2002
  34. Hwang DW, Kirn HG, Lee JS, Kim J, Li W, Oh SH, J. Phys. Chem. B, 109(6), 2093, 2005
  35. Jang JS, Ji SM, Bae SW, Son HC, Lee JS, J. Photochem. Photobiol. A-Chem., 188(1), 112, 2007
  36. Jang JS, Choi SH, Shin N, Yu C, Lee JS, J. Solid State Chem., 180(3), 1110, 2007
  37. Jang JS, Hwang DW, Lee JS, Catal. Today, 120(2), 174, 2007