Issue
Korean Chemical Engineering Research,
Vol.45, No.4, 372-377, 2007
망상구조 폴리우레탄 담체를 이용한 황화수소 제거
Removal of Hydrogen Sulfide using Reticulated Polyurethan Carrier in Biofilter
본 연구에서는 생물학적 공정을 사용하여 황화수소를 제거하는데 있어 망상구조의 폴리우레탄 담체의 바이오필터 충진물로서의 특성을 유입가스농도와 유입가스량의 두 변수를 대상으로 조사하였다. 실험결과 망상구조의 폴리우레탄 담체를 적용한 바이오필터의 황화수소 최대제거용량은 488.3 g-H2S/m3·h이었으며, 추정된 임계부하속도는 330.1 g-H2S/m3·h이었다. 본 연구의 결과 망상구조의 폴리우레탄 담체를 황화수소의 생물학적 처리를 위한 바이오필터의 담체로서 적용가능성을 확인하였다.
In order to assess its capability as biofilter bed material under variable conditions of two parameters (inlet gas concentration and inlet gas flow rate), reticulated polyurethan was applied to remove hydrogen sulfide via a biological process. We detected a maximal elimination capacity (critical loading rate) of 488.3 (330.1) g-H2S/m3·hr, when reticulated polyurethane was employed as supporting material of biofilter. This study show that the application of reticulated polyurethane carrier might be a favorable choice as a packing material in biofilter for the biological removal of hydrogen sulfide.
[References]
  1. Edwards FG, Nirmalakjandan N, Water Sci. Technol., 34(3-4), 565, 1996
  2. Altaf Wani H, Branion Richard MR, Lau Anthony K, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., A32(7), 2027, 1997
  3. Jeong GT, Lee GY, Lee KM, Sunwoo CS, Lee WT, Jung SH, Cha JM, Jang YS, Park DH, J. Biotechnol. Bioeng., 21(1), 37, 2006
  4. Devinny JS, Webster TS, Torres E, Basrai S, Hazardous Waste Hazardous Mater., 12(3), 233, 1995
  5. Webster TS, Webster JS, Torres E, Basrai SS, Biotechnol. Bioeng., 53(3), 296, 1997
  6. Yang Y, Allen ER, J. Air Waste Manage., 44(11), 863, 1994
  7. Weber FJ, Hartmans S, Dragt AJ, van Hameds J, (Ed.), Biotechniques for Air Pollution Abatement and Odour Control Policies, Elsevier, Amsterdam, 125-130, 1992
  8. Kim SW, Jang YM, Myung SW, Choi HS, Korean J. Biotechnol. Bioeng., 18(5), 412, 2003
  9. Myung SW, Nam YS, Lee YW, Choi HS, Korean J. Biotechnol. Bioeng., 18(6), 448, 2003
  10. Jeong GT, Lee GW, Byun KY, Lee KM, Sunwoo CS, Lee WT, Park CY, Kim DH, Cha JM, Jang YS, Park DH, Korean J. Biotechnol. Bioeng., 20(5), 341, 2005
  11. Park DH, Cha JM, Ryn HW, Lee GW, Yu EY, Rhee JI, Park JJ, Kim SW, Lee IW, Joo YI, Ryu YW, Hur BK, Park JK, Park K, Biochem. Eng. J., 11, 167, 2002
  12. Wright DF, Schroede ED, J. Environmental Engineering, 123(6), 547, 1997
  13. Jung IG, Park OH, Woo HJ, Park CH, Biotechnol. Bioprocess Eng., 10(1), 34, 2005
  14. Webster TS, Cox HHJ, Deshusses MA, Environ. Prog., 18(3), 162, 1999
  15. Lee MG, Bin JI, Lee BH, Kim JK, Choi H, Kwon SH, HWAHAK KONGHAK, 39(3), 379, 2001
  16. Kam SK, Kang KH, Lim JK, Lee MG, J. Environmental Sciences, 13(1), 47, 2004
  17. Eun N, Lam DV, Galera MM, Nisola GM, Son S, Kim SH, Song JH, Chung WJ, J. Ind. Eng. Chem., 11(5), 666, 2005
  18. Oh KJ, Cho KC, Choung YH, Park SK, Cho SK, Kim D, Korean J. Chem. Eng., 23(1), 148, 2006
  19. Kim CW, Park JS, Cho SK, Oh KJ, Kim YS, Kim D, J. Microbiol. Biotechnol., 13(2), 301, 2003