Issue
Korean Chemical Engineering Research,
Vol.45, No.3, 269-276, 2007
TiO2 함유 피치섬유의 최적 안정화 조건
The Optimum Stabilization Conditions of TiO2-containing Pitch Fiber
TiO2 함유 피치섬유의 최적 안정화 조건을 도출하기 위하여 TiO2의 함유량을 달리하여 피치섬유를 제조한 후, 여러가지 안정화 조건에 대한 섬유의 특성 변화와 금속입자의 거동을 관찰하였다. 공기에 의한 피치섬유의 안정화시 안정화온도가 높고, TiO2 함유량이 적을수록 산화에 의한 무게증가가 컸다. 안정화된 섬유를 탄화하면 수율은 71~82 wt.% 수준인데, TiO2가 활성촉매 역할을 하여 TiO2의 함유량이 많을수록 탄화수율은 낮았다. 안정화 과정에서 열가소성의 피치섬유는 산소의 도입으로 카르보닐기(C=O)와 카르복실기(-COOH) 등이 형성되며 동시에 이들이 가교결합을 이루고 수소를 탈리시켜 열경화성 섬유로 전환되었다. 활성탄소섬유의 기공크기는 TiO2 함유량이 증가함에 따라 점점 커졌으며, 주사전자현미경과 투과전자현미경을 통하여 섬유의 표면과 내부에 분포된 TiO2 입자와 분포를 관찰한 결과 안정화, 탄화 및 활성화공정 중 일부 TiO2가 서로 뭉침을 알 수 있었다. 최종적으로 0.5 wt.% TiO2 함유 석유계 피치섬유는 280 ℃에서 3 hr를 최적 안정화 조건으로 제시할 수 있었다.
TiO2-containing pitch fibers were prepared and various stabilization variables were investigated by characterizations of the fibers and behaviors of TiO2 particles in the optimum stabilization conditions. When pitch fiber was stabilized by air at the optimum condition, the fiber weight increased as an increase of the stabilization temperature and a decrease of TiO2 concentration. The carbonization yield was 71~82 wt.%, showing a decrease of the yield with the TiO2 increase caused by the catalytic activity of TiO2 to combustion. During the stabilization, newly developed carbonyl and carboxyl groups were introduced on the fiber surface and cross-linking reactions were progressed resulting the thermosetting property, which was verified by the replacement of hydrogen with oxygen. Pore size of the activated carbon fiber was increased by an increase in TiO2 concentration. In the considerations of the aggregation behaviors of the TiO2 particles, the optimum stabilization conditions of 0.5 wt.% TiO2 containing petroleum-based pitch fiber were suggested as 280 ℃, 3 hr.
[References]
  1. Shigeyuki K, Hisashi T, Hajime Y, Yoshio Y, Noriko Y, Minoru S, The 23th Conference on Carbon Materials, Chiba, Japan, Dec., 1996
  2. Narihito T, Hiroshi I, Norihiko S, Yoshiaki F, Carbon, 43(11), 2358, 2005
  3. Zhang X, Zhou M, Lei L, Carbon, 44(2), 325, 2006
  4. Ryu SK, Eom SY, Yim KS, EdieDan D, Korean Chem. Eng. Res., 42(3), 288, 2004
  5. Donnet JB, Wang TK, Peng JCM, Rebouillat S, 3rd ed., Marcel Dekker Inc., New York, 1-83, 1998
  6. Fitzer E, Frohs W, Heine M, Carbon, 24(4), 387, 1986
  7. Matsumoto T, Mochida I, Carbon, 31(1), 143, 1993
  8. Jung DH, Lee YS, Rhee BS, HWAHAK KONGHAK, 29(1), 89, 1991
  9. Park YD, Mochida I, Matsumoto T, Carbon, 26(3), 375, 1988
  10. Lee JK, In SJ, Lee DW, Rhee BS, Ryu SK, HWAHAK KONGHAK, 28(6), 669, 1990
  11. Suzuki T, Hamaguchi M, Proceedings, the 19th Biennial Conf. on Carbon, Penn. State University, USA, 166, 1989
  12. Lee JK, In SJ, Rhee BS, Ryu SK, HWAHAK KONGHAK, 29(4), 433, 1991
  13. Ryu SK, Kim SY, Gallego N, Edie DD, Carbon, 37(10), 1619, 1999
  14. Eom SY, Cho TH, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(5), 591, 2000
  15. Oya A, Wakahara T, Yoshida S, Carbon, 31(8), 1243, 1993
  16. Kim MC, Eom SY, Ryu SK, Edie DD, Korean Chem. Eng. Res., 43(6), 745, 2005
  17. Cho TH, Kim SY, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(3), 338, 2000
  18. Yim KS, Eom SY, Ryu SK, Edie DD, HWAHAK KONGHAK, 41(4), 503, 2003
  19. Lee YS, Basova YV, Edie DD, Reid LK, Newcombe SR, Ryu SK, Carbon, 41(13), 2573, 2003
  20. Hisashi T, Shigeyuki K, Hisashi T, Makiko I, Hajime Y, Takayoshi K, Juji M, The 23th Conference on Carbon Materials, Chiba, Japan, Dec., 1996
  21. Oya A, Yoshida S, Alcaniz-Monge J, Linares-Solano A, Carbon, 33(8), 1085, 1995
  22. Lu Y, Zhu ZP, Liu ZY, New carbon materials (China), 19(1), 1, 2004
  23. Jung SC, Kim SC, Seo SG, HWAHAK KONGHAK, 39(4), 385, 2001