Issue
Korean Chemical Engineering Research,
Vol.45, No.3, 234-241, 2007
유틸리티 플랜트 모터/터빈 공정의 최적운전
Optimal Operation of Motor/Turbine Processes in Utility Plant
공장의 안정적인 운전과 경제성을 위해서는 유틸리티의 수급을 정확히 파악하고 공급하는 것이 중요하다. 모터/터빈 공정은 유틸리티 플랜트에서 수증기와 전력의 균형을 조절하여 주며 이의 최적 운전은 유틸리티 플랜트의 경제성에 지대한 영향을 미친다. 모터/터빈 공정의 분석을 위해서는 먼저 수증기 발생장치와 수증기 분배장치 전반에 대한 모델의 규명이 요구됨은 물론 제반 상황에 대한 운전지식이 필요하다. 유틸리티 관련 장치의 모델과 운전지식 베이스를 기반으로 구성되는 모터/터빈 운전 최적화 시스템에서는 다양한 등급의 수증기 헤더에서 요구되는 수증기 양이 변할 때 각 유틸리티 설비의 최적 운전조건을 제시하여 주며 수증기 요구량의 변화에 따라 유틸리티 펌프의 구동원이 적절하게 선택되고 이에 따라 전체 유틸리티 플랜트의 조업 경비도 절감할 수 있다.
To achieve safe operation and to improve economics it is imperative to monitor and analyse demand and supply of utilities and to meet utility needs in time. The main objective of motor/turbine processes is to manipulate steam and electricity balances in utility plants. The optimal operation of motor/turbine processes is by far the most important to improve economics in the utility plant. In order to analyse motor/turbine processes, we need steady state models for steam generation equipments and steam distribution devices as well as turbine generators. In addition heuristics concerning various operational situations are required. The motor/turbine optimal operation system is based on utility models and operational knowledgebase and provides optimal operating conditions when the amount of steam demand from various steam headers is changed frequently. The optimal operation system also produces optimal selection of driving devices for utility pumps to reduce operating cost.
[References]
  1. Maria TVR, Hydrocarb. Process., 56(7), 111, 1977
  2. Pilavakis PA, Perrin MA, Hydrocarb. Process., 6(7), 89, 1983
  3. Bouilloud, Hydrocarb. Process., 48(7), 127, 1969
  4. Nath R, Libby DJ, Duhon HJ, Chem. Eng. Prog., 82(5), 31, 1986
  5. Poje JB, Smart AM, Chem. Eng. Prog., 82(5), 39, 1986
  6. Stacy GD, Gaines LD, Collis F, Hydrocarb. Process., 60(10), 75, 1981
  7. Clark JK, Helmick NE, Chem. Eng. Prog., 76(11), 116, 1980
  8. Diaz MS, Bandomi JA, Comput. Chem. Eng., 20(5), 531, 1996
  9. Nishio M, Shiroko K, Umeda T, Ind. Eng. Chem. Process Des. Dev., 21(4), 640, 1982
  10. Petroulas T, Reklaitis GV, AIChE J., 30(1), 69, 1984
  11. Maia LO, Decarvalho LA, Qassim RY, Comput. Chem. Eng., 19(4), 481, 1995
  12. Nishio M, Itoh J, Shiroko K, Umeda T, Ind. Eng. Chem. Process Des. Dev., 19(2), 306, 1980
  13. Soterios A, Papoulias IEG, Comput. Chem. Eng., 7(6), 695, 1983
  14. Lindsley D, Boiler Control Systems, McGraw-Hill, 1991
  15. Harrell G, Steam System Survey Guide, DOE(U.S.), 2002
  16. Lee WO, Hanyang Univ., 2002
  17. Yi HS, Hanyang Univ., 2002
  18. Yoo YH, Yi HS, Yeo YK, Kim MK, Yang HS, Chung KP, Korean J. Chem. Eng., 13(4), 384, 1996