Issue
Korean Chemical Engineering Research,
Vol.45, No.1, 93-102, 2007
직접 메탄올 연료전지 유로 설계를 위한 3차원 모델 개발
Development of 3D DMFC Model for Flow Field Design
본 연구에서는 직접 메탄올 연료전지의 전기 화학 반응에 의해 발생하는 이산화탄소와 물의 조절을 위해 기체 발생과 흐름 현상을 관찰할 수 있는 3차원 모델을 개발하였다. 산화극 쪽에 발생한 기체의 조절은 직접 메탄올 연료전지를 설계하는데 중요한 문제이며, 연료 전지의 성능에 커다란 영향을 준다. 유로는 기체의 조절과 아주 밀접한 관계가 있으나 다양한 유로를 설계하고 실험하여 최적의 디자인을 찾는 것은 어렵고 바이폴라 플레이트의 높은 가격 때문에 많은 비용이 필요하다. 이 문제를 해결하기 위해 전산 유체역학 모델링 기법을 도입하였다. 전산 유체역학을 기반으로 하여 개발된 two-fluid 모델을 이용하여 유체의 흐름 패턴을 시각화 하여 분석함으로써 실험의 횟수를 줄일 수 있었고, 대표적인 4가지 연료전지 유로인 serpentine, zigzag, parallel, semi-serpentine 형태에 개발된 모델을 적용하여 속도, 압력, 메탄올 몰분율, 기체 몰분율 등을 계산하였다. 계산 결과를 이용하여 각 형태의 특성과 장단점을 파악하였고, 이를 바탕으로 가스를 효율적으로 제거할 수 있는 최적 유로를 설계 하였다.
The objective of this study is to develop a 3D DMFC model for modeling gas evolution and flow patterns to design optimal flow field for gas management. The gas management on the anode side is an important issue in DMFC design and it greatly influences the performance of the fuel cell. The flow field is tightly related to gas management and distribution. Since experiment for the optimal design of various flow fields is difficult and expensive due to high bipolar plate cost, computational fluid dynamics (CFD) is implemented to solve the problem. A two-fluid model was developed for CFD based flow field design. The CFD analysis is used to visualize and to analyze the flow pattern and to reduce the number of experiments. Case studies of typical flow field designs such as serpentine, zigzag, parallel and semi-serpentine type illustrate applications of the model. This study presents simulation results of velocity, pressure, methanol mole fraction and gas content distribution. The suggested model is verified to be useful for the optimal flow field design.
[References]
  1. Sokolichin A, Eigenberger G, Lapin A, Lubbert A, Chem. Eng. Sci., 52(4), 611, 1997
  2. Wang ZH, Wang CY, J. Electrochem. Soc., 150(4), A508, 2003
  3. Sundmacher K, Scott K, Chem. Eng. Sci., 54(13-14), 2927, 1999
  4. Danilov VA, Lim J, Moon I, Choi KH, A CFD-based Two-fluid Model for a DMFC, AIChE Annual Meeting, October 30 . November 4, Cincinnati, Ohio, 2005
  5. Danilov VA, Lim J, Moon I, J. Power Sources, 162(2), 992, 2006
  6. Danilov V, Lim J, Moon I, Choi KH, Korean J. Chem. Eng., 23(5), 753, 2006
  7. Arico AS, Creti P, Baglio V, Modica E, Antonucci V, J. Power Sources, 91(2), 202, 2000
  8. Argyropoulos P, Scott K, Taama WM, Electrochim. Acta, 44(20), 3575, 1999
  9. Argyropoulos P, Scott K, Taama WM, Chem. Eng. J., 78(1), 29, 2000
  10. Bewer T, Beckmann T, Dohle H, Mergel J, Stolten D, J. Power Sources, 125(1), 1, 2004
  11. Baxter SF, Battaglia VS, White RE, J. Electrochem. Soc., 146(2), 437, 1999
  12. Geiger A, Lehmann E, Vontobel P, Scherer GG, Direct Methanol Fuel Cell . in situ Investigation of Carbon Dioxide Patterns in Anode Flow Fields by Neutron Radiography, Scientific Report 2000, Volume V, p.86-87, ed. by: C. Daum and J. Leuenberger, Switzerland, http://www1.psi.ch/
  13. Kulikovsky AA, Electrochem. Commun., 7, 237, 2005
  14. Lim J, Danilov VA, Cho Y, Choi K, Chang H, Moon I, Flow Field Design for Gas Management in a Direct Methanol Fuel Cell with a Bipolar Plate, in: Proceeding of PSE ASIA, 2005
  15. Danilov VA, Moon I, A nonisothermal two-phase model for a DMFC, 17th International Congress of Chemical and Process Engineering, CHISA 2006, Praha, Czech Republic, Aug., 27-31, 2006
  16. Jeong I, Moon I, The Evaluation of the Feeding Effect on Liquid-Feed Dmfc Using Rigorous Dynamic Simulation, 2006 AIChE Annual meeting, San Francisco, Calrifonia, USA, Nov., 12-17, 2006
  17. Sundmacher K, Schultz T, Zhou S, Scott K, Ginkel M, Gilles ED, Chem. Eng. Sci., 56(2), 333, 2001
  18. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI, LeMouel A, McCord BN, Int. J. Multiph. Flow, 25(3), 395, 1999
  19. Yang H, Zhao TS, Electrochim. Acta, 50(16-17), 3243, 2005
  20. Yang H, Zhao TS, Ye Q, J. Power Sources, 142(1-2), 117, 2005
  21. Yang H, Zhao TS, Cheng P, Int. J. Heat Mass Transf., 47(26), 5725, 2004
  22. Wang ZH, Wang CY, Chen KS, J. Power Sources, 94(1), 40, 2001