Issue
Korean Chemical Engineering Research,
Vol.44, No.6, 609-613, 2006
분무열분해 공정에 의해 제조된 Ba2-xSrxSiO4:Eu2+ 형광체의 발광특성
The Photoluminescence Characteristic of Ba2-xSrxSiO4:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis
분무열분해법에 의해 장파장 UV 여기원 하에서 높은 발광세기를 가지는 Ba2-x.Srx.SiO4:Eu2+ 형광체를 제조하였다. 분무열분해공정 의해 제조된 Ba2-x.Srx.SiO4:Eu2+ 형광체의 발광특성, 분말 형태 및 결정성에 대해 조사하였다. 분무열분해 공정에 의해 제조된 Ba2-x.Srx.SiO4:Eu2+ 형광체는 모체를 구성하는 바륨과 스트론튬의 비에 따라 청녹색에서 황색에 이르기까지 다양한 파장대의 색을 구현할 수 있었다. x = 0인 Ba2SiO4:Eu2+ 형광체의 경우 발광 중심파장이 500 nm 였으며, x = 2인 Sr2SiO4:Eu2+ 형광체의 경우 발광중심 파장이 554 nm였다. 분무열분해 공정에 의해 제조된 Ba2-x.Srx.SiO4:Eu2+ 형광체는 구형의 형상을 띄지만 중공성의 입자 특성을 가졌다. 반면에 후열처리 과정을 거친 Ba2-x.Srx.SiO4:Eu2+ 형광체는 큰 입자 크기와 불규칙한 형태를 가졌다. Ba1.488Sr0.5SiO4:Eu0.012 2+ 형광체가 환원분위기 하에서 후열처리 온도 1,200 ℃에서 3시간 동안 후열처리 과정을 거쳤을 때 최적의 발광 세기를 가졌다.
Ba2-xSrxSiO4:Eu2+ phosphor particles with the high photoluminescence (PL) intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis. The photoluminescence, morphological and crystalline characteristics of Ba2-x.Srx.SiO4:Eu2+ phosphor particles prepared by spray pyrolysis were investigated. Ba2-x.Srx.SiO4:Eu2+ phosphor particles prepared by spray pyrolysis had various colors from bluish green to yellow by changing the ratio of barium and strontium of the host material. In case of x=0, the main emission peak of Ba2SiO4:Eu2+ phosphor was 500 nm. In case of x=2, the main emission peak of Sr2SiO4:Eu2+ phosphor was 554nm. Ba2-x.Srx.SiO4:Eu2+ phosphor particles obtained by spray pyrolysis had spherical shape and hollow structure. On the other hand, the post-treated Ba2-x.Srx.SiO4:Eu2+ phosphor particles had large size and irregular shape. The Ba1.488Sr0.5SiO4:Eu0.012 2+ phosphor particles had the maximum PL intensity after post-treatment at temperature of 1300℃ for 3h under reduction atmosphere.
[References]
  1. Hu Y, Zhuang W, Ye H, Wang D, Zhang S, Huang X, J. Alloy. Compd., 390, 226, 2005
  2. Iwaya M, Terao S, Sano T, Ukai T, Nakamura R, Kamiyama S, Amano H, Akasaki I, J. Cryst. Growth, 237, 951, 2002
  3. Edmond J, Abare A, Bergman M, Bharathan J, Bunker KL, Emerson D, Haberern K, Ibbetson J, Leung M, Russel P, Slater D, J. Cryst. Growth, 272, 242, 2004
  4. Wang HX, Li HD, Lee YB, Sato H, Yamashita K, Sugahara T, Sakai S, J. Cryst. Growth, 264, 48, 2004
  5. Barry TL, J. Electrochem. Soc., 115, 1181, 1968
  6. Poort SHM, Janssen W, Blasse G, J. Alloy. Compd., 260, 93, 1997
  7. Kim JS, Jeon PE, Choi JC, Park HL, Solid State Commun., 133, 187, 2005
  8. Jiang L, Chang C, Mao D, Feng C, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 103, 271, 2003
  9. Chang CK, Mao DL, Thin Solid Films, 460(1-2), 48, 2004
  10. Tang Z, Zhang F, Zhang Z, Huang C, Lin Y, J. European Ceram. Soc., 20, 2129, 2000
  11. Zhang X, Liu X, J. Electrochem. Soc., 139(2), 622, 1992
  12. Roh HS, Lee CH, Yoon HS, Kang YC, Park HD, Park SB, HWAHAK KONGHAK, 40(6), 752, 2002
  13. Roh HS, Kang YC, Park SB, HWAHAK KONGHAK, 39(2), 195, 2001
  14. Vanheusden K, Seager CH, Warren WL, Tallant DR, Caruso J, Hampden-Smith MJ, Kodas TT, J. Lumines., 75, 11, 1997
  15. Lenggoro IW, Xia B, Mizushima H, Okuyama K, Kijima N, Mater. Lett., 50, 92, 2001