Issue
Korean Chemical Engineering Research,
Vol.44, No.6, 602-608, 2006
PAN계 탄소섬유 강화 종이의 물리적 특성 및 전기전도도
Physical Properties and Electrical Conductivity of PAN-based Carbon Fiber Reinforced Paper
폴리아크릴로니트릴(PAN)계 탄소섬유와 목재펄프를 이용하여 탄소섬유의 길이와 함량 및 강화 종이의 평량을 달리하여 각각 탄소섬유 강화 종이를 제조한 후 탄소섬유와 펄프섬유와의 접착특성 및 강화 종이의 물리적 특성과 전기전도도를 조사하였다. 탄소섬유 강화 종이의 형성은 탄소섬유와 펄프섬유의 계면에서의 화학적 결합이라기보다는 물리적인 얽힘과 접착이었으며, 탄소섬유의 첨가량을 증가시키면 강화 종이의 두께와 인열강도는 증가하는 반면 인장강도와 파열강도는 감소하였다. 탄소섬유의 길이가 짧을수록 강화 종이 내에서 섬유의 분산성이 양호하였으나 가장 우수한 전기전도도는 탄소섬유의 길이가 10 mm일 때였다. 강화 종이의 전기전도도는 탄소섬유의 함량이 2 wt%일 때부터 급격히 증가하다가 8 wt% 이상이 되면 서서히 증가하는 S자형 곡선을 보였으며, 강화 종이의 평량 증가에 따라 선형적으로 비례하여 향상되었다. 따라서, 전기전도도와 물리적 특성이 우수한 강화 종이를 얻기 위해서는 탄소섬유의 함량을 증가시킴과 동시에 평량을 증가시키는 것이 바람직하다.
Carbon fiber (CF) reinforced papers using polyacrylonitrile (PAN) based CF and wood pulp were prepared by varying the lengths and the concentrations of CF, and the basis weight of paper to investigate adhesive state between CF and pulp, and physical properties and electrical conductivity of the paper. The reinforcement was caused by physical entanglement and adhesion at the interface of the different fibers rather than by chemical bonds. The tear strength and the thickness of the paper increased as increasing the concentration of CF, while the tensile and the burst strength of the paper decreased. The improved dispersion of CF in the paper was obtained from mixing shorter CF, but the maximum electrical conductivity of the paper was gained from mixing 10 mm chopped CF. The electrical conductivity of the paper increased sharply from 2 wt% to 8 wt% of CF showing S-curve, and increased linearly as increasing the basis weight of the paper. Therefore, in order to improve the electrical conductivity and the physical property of the paper, the increase of basis weight of the paper is also important as the increase of CF content in the paper.
[References]
  1. Murday JS, Dominguez DD, Synth. Met., 9, 397, 1984
  2. Agari Y, Ueda A, Nagai SJ, Appl. Polym. Sci., 52(9), 1223, 1994
  3. Das NC, Chaki TK, Khastgir D, Chakraborty A, Adv. Polym. Technol., 20(3), 226, 2001
  4. Roy D, Jana PB, De SK, Gupta BR, Chaudhuri S, Pal AK, J. Mater. Sci., 31(20), 5313, 1996
  5. Wang XF, Wang YL, Jin ZH, J. Mater. Sci., 37(1), 223, 2002
  6. Park JM, Lee SI, Kim JW, Yoon DJ, J. Colloid Interface Sci., 244(2), 410, 2001
  7. Kio K, Hayashi Y, “Sheet-like Electric Heater and a Sheetlike Thermal Sensing Element Using Carbon Fiber Mixed Paper”, U.S. Patent No. 5,582,757, 1996
  8. Itabashi M, “Manufacture of Conductive Heating Paper,” J.P. Patent No. 2000150117, 2000
  9. Jang J, Ryu SK, Korean Chem. Eng. Res., 42(5), 598, 2004
  10. Tim P, Larry T, TAPPI, 73, 86, 1990
  11. Paper and board - determination of air permeance (medium range) part3: bendtsen method, ISO 5636-3, 1992
  12. Lee YK, Polym.(Korea), 9, 175, 1985
  13. Gardner KH, Blackwell J, Biopolymers, 13(10), 1975, 1974
  14. Blackwell J, Kolpek FJ, Gardner KH, Tappi, 61(1), 71, 1978
  15. Krekel G, Huttinger KJ, Hoffman WP, J. Mater. Sci., 29(13), 3461, 1994
  16. Bristow JA, Kolseth P, “Paper Structure and Properties,” Marcel Dekker. Inc., 311, 1986
  17. Clark J, Tappi, 45, 628, 1962
  18. Miyauchi S, Togashi E, J. Appl. Polym. Sci., 30, 2743, 1985
  19. Cho JW, Choi JS, J. Appl. Polym. Sci., 77(9), 2082, 2000
  20. Zhang C, Yi XS, Yui H, Asai S, Sumita M, J. Appl. Polym. Sci., 69(9), 1813, 1998
  21. Lozano K, Bonilla-Rios J, Barrera EV, J. Appl. Polym. Sci., 80(8), 1162, 2001
  22. James C, James, d’A. C., Pulp technology and treatment for paper, 430, 1985