Issue
Korean Chemical Engineering Research,
Vol.44, No.5, 547-554, 2006
응집공정에서 발생하는 알루미늄 가수분해종 분포특성
Characteristic of Al(III) Hydrolysis Specie Distribution on Coagulation Process
응집공정에서 교반조건과 응집제 주입농도에 따른 알루미늄 가수분해종 변화에 대한 실험결과 다음과 같은 결론을 얻을 수가 있었다. 알루미늄 표준용액을 이용하여 모노머성 알루미늄과 페론 반응을 살펴본 결과 반응초기에 급격한 반응률을 보이며 반응시간 3분 정도에 평형에 도달함을 알 수 있었다. 순수의 경우 교반시간에 따른 영향은 거의 나타나지 않고 있으며 거의 일정한 반응률을 보이고 있었다. 상수원수의 경우 입자상 물질과 유기물의 존재함에 따라 응집제 주입시 수중에서 형성되는 알루미늄 가수분해종이 입자상 물질 및 유기물과 우선적으로 반응하기 때문에 형성되는 알루미늄 가수분해 종에 대한 반응률이 교반시간에 따라 다르게 나타났다. 응집제 주입량이 증가할수록 페론과 반응율이 빠르게 일어나나 일정한 시간이 경과한 후에 반응율을 살펴보면 응집제 주입량이 증가할수록 반응이 느리게 나타났다. 순수의 경우 교반시간에 따른 Ka 값은 교반시간이 증가할수록 Ka 값은 감소함을 알 수 있으며 응집제 주입량의 영향은 크게 나타나지 않고 있다. 그러나 Kb의 경우 응집제 주입량이 증가할수록 반응속도 상수값이 낮아지는 경향을 보이고 있으며, 마찬가지로 교반시간이 증가할수록 Kb 값은 감소함을 알 수 있다. 상수원수를 사용한 경우 순수와 마찬가지로 교반시간에 따른 Ka, Kb값 은 교반시간이 증가할수록 감소하였다. 그러나 응집제 주입량이 증가할수록 Ka 값은 감소하였다.
The overall objective of this research was to find out the role of rapid mixing conditions in the species of hydrolyzed Al(III) formed by Al(III) coagulants and to evaluate the distribution of hydrolyzed Al(III) species by coagulant dose and coagulation pH. When an Al(III) salt was added to water, monomeric Al(III), polymeric Al(III), precipitate Al(III) was formed by Al(III) hydrolysis. The method of hydrolyzed Al(III) species characterization analysis was based on timed spectrophotometer with ferron as a color developing reagent. The hydrolytic species were divided into monomer, polymer, precipitate from the reaction kinetics. And then, the color intensity for monomeric Al(III) was read 3 min after mixing. With standard Al solution containing monomeric Al(III) only, the Al-ferron color intensity slightly increased with until about 3 min. During the rapid mixing period, for purewater, formation of dissolved Al(III) (monomer and polymer) was similar to rapid mixing condition, but for raw water, the species of Al(III) hydrolysis showed different result. During the rapid mixing period, for high coagulant dose, Al-ferron reaction increases rapidly. The kinetic constants, Ka and Kb, derived from Al-ferron reaction. The kinetic constants followed very well the defined tendencies for coagulation condition. For pure water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values. Also, for raw water, when the rapid mixing time increased, the kinetic constants, Ka and Kb showed lower values.
[References]
  1. Akitt JW, Greenwood NN, Khandelwal BL, Lester GD, J. Chem. Soc.-Dalton Trans., 604, 1972
  2. Amirtharajah A, Mills KM, J. AWWA, 74, 210, 1982
  3. Amirtharajah A, O’Melia CR, Coagulation process: destabilization, mixing, and flocculation, In Water Quality and Treatment, 4th Ed., McGraw-Hill, New York, 1990
  4. Batchelor B, Mcewen JB, Perry R, Environ. Sci. Technol., 20, 891, 1986
  5. Clark MM, David R, Wiesner MR, “Effect of Micromixing on Product Selectivity in Rapid Mix,” Proc. AWWA Annual Conf., Kanasas, 1987
  6. David R, Parker, Environ. Sci. Technol., 26, 908, 1992
  7. Dempsey BA, Ganho RM, O’Melia CR, J. AWWA, 76, 141, 1984
  8. Ishikawa T, Kondo Y, Yasukawa A, Kandori K, Corrosion science, 40, 1239, 1999
  9. Jardine PM, Zelazny LW, J. Soil Sci. Am, 50, 895, 1986
  10. Parker DR, Bertsch PM, Environ. Sci. Technol., 26, 914, 1992
  11. Parthasarathy N, Buffle J, Water Res., 19, 25, 1985
  12. Smith RM, Robert F, Relation among equilibrium and nonequilibrium aqueous species of aluminum hydroxy complexes in Nonequilibrium systems, In Natural Water Chemistry, ACS Advances in Chemistry Series No. 106, American Chemical Society, Washington, DC 250-279, 1971
  13. Van Benschoten JE, Edzward JK, Water Res., 24, 1519, 1990
  14. Wang SL, Wang MK, Tzou YM, Colloids Surf. A: Physicochem. Eng. Asp., 231, 143, 2003