Issue
Korean Chemical Engineering Research,
Vol.44, No.5, 540-546, 2006
파일럿 규모의 흐름반응기에서 유기 및 무기 첨가제가 질소산화물의 선택적 무촉매 환원반응에 미치는 영향
Effects of Organic and Inorganic Additives on Selective Non Catalytic Reduction Reaction of NOx in a Pilot Scale Flow Reactor
파일럿 크기의 흐름반응기에서 유기와 무기 첨가제가 질소산화물의 선택적 무촉매 환원반응에 미치는 영향을 공정변수 변화에 따라 고찰하였다. 질소산화물 저감효율은 반응기의 체류시간과 초기 NOx 농도 증가에 따라 증가하였다. 요소용액에 의한 NOx 환원반응은 850 ℃에서 시작되어 970 ℃에서는 최대값을 나타내었으며, NSR = 2.0까지 증가하였다. 유기첨가제로서 에탄올과 페놀의 첨가는 온도창을 저온 영역으로 이동시켰으며, 에탄올 구조내의 탄화수소에 의한 부반응으로 최대의 NOx 저감효율이 감소하였다. NaOH 첨가는 NaOH의 연쇄반응과 N2O 저감으로 인하여 온도창을 확대시키고, 최대 NOx 저감효율을 10% 정도 향상시켰다.
Effects of organic and inorganic additives on the SNCR reaction of NOx were investigated in a pilot scale flow reactor with a variation of operating parameters. NOx reduction efficiency increased with the increase of a residence time and an initial NOx concentration. NOx reduction reaction by urea solution started to appear about 850 and then reached to maximum value around 970 ℃. NOx reduction efficiency also increased with the increase of NSR (Normalized Stoichiometric Ratio) up to 2.0. Addition of ethanol and phenol as an organic additives shifted the optimum temperature window to lower region with decreasing the maximum NOx reduction efficiency. This might be due to the side reaction of hydrocarbon in ethanol structure. NaOH addition widened the temperature window and enhanced the NOx reduction efficiency about 10% due to the chain reaction of NaOH and the reduction of N2O.
[References]
  1. Lyon RK, Environmental Management, 7, 1979
  2. Radojevic M, Environ. Pollut., 102, 685, 1998
  3. Cooper CD, Alley FC, “Air Pollution Control A Design Approach,” 2nd Ed., Waveland Press, Inc., Illinois, 1994
  4. Choi SW, Choi SK, NERI, 6, 203, 2001
  5. Caton JA, Siebers DL, Combust. Sci. Technol., 65, 277, 1989
  6. Jodal M, Nielsen C, 23th Symposium (International) on Combustion, The Combustion Institute, 237, 1990
  7. Miller JA, Bowman CT, Int. J. Chem. Kinet., 23, 289, 1991
  8. Sun WH, Stamatakis P, Hofmann JE, American Chemical Society, Division of Fuel Chemistry, 38, 734, 1993
  9. Azuhata S, Akimoto H, Hishinuma Y, AIChE J., 28, 7, 1982
  10. Rota R, Zanoledo EF, Fuel, 82, 765, 2003
  11. Yoo KS, Lee JG, Park DK, Jeong MJ, Lee C, Shin JW, Korean Chem. Eng. Res., 41, 219, 2003
  12. Suhulmann J, Rotzoll G, Fuel, 72, 175, 1993
  13. Lodder P, Lefers JB, Chem. Eng. J., 30, 161, 1985
  14. Lee SM, Park K, Kwak TH, Park JW, Makin S, Kim BH, Korean Chem. Eng. Res., 43(2), 324, 2005
  15. Wenli D, Dam-Johansen K, Ostergaard K, “Widening the Temperature Range of the Thermal DeNOx Process. An Experimental Investigation,” 23th Symposium (International) on Combustion, The Combustion Institute, 297-303, 1990
  16. Noda S, Harano A, Hashimoto M, Sadakata M, Combust. Flame, 122(4), 439, 2000
  17. Lim YI, Yoo KS, Jeong SM, Kim SD, Lee JB, Choi BS, Korean Chem. Eng. Res., 35, 83, 1997
  18. Saleeby EG, Lee HW, Chem. Eng. Sci., 49(12), 1879, 1994
  19. Ostberg M, Damjohansen K, Chem. Eng. Sci., 50(13), 2061, 1995
  20. Lee JB, Kim SD, J. Chem. Eng. Jpn., 29(4), 620, 1996
  21. Ostberg M, Damjohansen K, Johnsson JE, Chem. Eng. Sci., 52(15), 2511, 1997
  22. Zamansky VM, Lissianski VV, Maly PM, Ho L, Rusli D, Gardiner WC, Combust. Flame, 117(4), 821, 1999
  23. Miller JA, Brown CT, Prog. Energy Combust. Sci., 15, 287, 1989
  24. Caton JA, Narney JK, Cariappa C, Laster WR, The Canadian Journal of Chemical Engineering, 73, 345, 1995
  25. Jeong SM, Kim SD, Korean J. Chem. Eng., 16(5), 614, 1999