Issue
Korean Chemical Engineering Research,
Vol.44, No.3, 300-306, 2006
유동층 화학기상증착(FB-CVD)으로 제조한 광촉매 박막증착 비드의 조업변수에 따른 반응성
Photocatalytic Activities of Titania Deposited Beads by FB-CVD as Operation Variables
유동층 화학기상 증착법으로 모재의 종류, 유동층 반응기 내부의 온도, 압력 그리고 산소유량 등의 여러 가지 조업변수들을 변화시키며 광촉매가 박막증착된 비드를 제조하였고 제조된 광촉매코팅비드의 광반응성 측정을 통해 최적조업조건을 결정하였다. 제조한 광촉매에 대하여 FE-SEM, XRD 그리고 XPS 분석을 수행하였고, 광반응성은 아세트알데히드의 분해능력을 측정하여 분석하였다. 광촉매가 박막증착된 비드의 FE-SEM 분석 결과 글라스 비드 위의 티타니아는 비교적 매끄럽게 증착되었고, 실리카 위의 티타니아는 입자의 형태로 증착되었으며 알루미나 위의 티타니아는 결정상을 이루며 증착됨을 확인할 수 있었다. 그리고 광반응성 측정 결과 알루미나를 모재로 사용하여 온도는 600 °C, 압력은 5 torr에서 제조하였을 때 아세트알데히드 광분해 반응에서 가장 높은 광반응성을 보였고, 산소 유량은 큰 영향 을 미치지 않는 것으로 나타났다.
Photocatalyst deposited beads were prepared by fluidized bed chemical vapor deposition (FB-CVD) under various operating conditions of substrates, bed temperature, pressure, and oxygen concentration. Photocatalytic degradation of acetaldehyde was carried out to determine the optimum operating condition of prepared photocatalysts. They were characterized by using FE-SEM, XRD, and XPS. From the FE-SEM photographs, it was found that the surfaces of titania-coated beads were covered with crystal form, particle form, and slick form of titania on alumina, silica-gel, and glass beads, respectively. From the result of photocatalytic degradation of acetaldehyde, it was found that prepared titania/alumina beads at 600 °C, 5 torr showed superior performance to others, and oxygen flow rate has no significant effect.
[References]
  1. Jones AP, Atmos. Environ., 33(28), 4535, 1999
  2. Wargocki P, Bako-Biro Z, Clausen G, Fanger PO, Energy Build., 34(8), 775, 2002
  3. Wolko P, Nielsen GD, Atmos. Environ., 35(26), 4407, 2001
  4. Fanger PO, Int. J. Refrig. -Rev. Int. Froid, 24(2), 148, 2001
  5. Racciatti E, Vecchiet J, Ceccomancini A, Ricci F, Pizzigallo E, Sci. Total Environ., 270(1-3), 27, 2001
  6. Sano T, Negishi N, Takeuchi K, Matsuzawa S, Solar Energy., 77(5), 543, 2004
  7. Vorontsov AV, Savinov EN, Barannik GB, Troitsky VN, Parmon VN, Catal. Today, 39(3), 207, 1997
  8. Alberici RM, Jardim WE, Appl. Catal. B: Environ., 14(1-2), 55, 1997
  9. Ollis DF, Al-Ekabi H, “Photocatalytic Purification and Treatment of Water and Air,” Elsevier, Ontario, 1992
  10. Chen J, Ollis DF, Rulkens WH, Bruning H, Water Res., 33(5), 1173, 1999
  11. Tsai SJ, Cheng S, Catal. Today, 33(1-3), 227, 1997
  12. Fu X, Clark LAC, Yang Q, Anderson MA, Environ. Sci. Technol., 30(2), 647, 1996
  13. Lassaletta G, Fernandez A, Espinos JP, Gonzalezelipe AR, J. Phys. Chem., 99(5), 1484, 1995
  14. Flood RU, Fitzmaurice D, J. Phys. Chem., 99(22), 8954, 1995
  15. Morishita S, Suzuki K, Bull. Chem. Soc. Jpn., 67(8), 2354, 1994
  16. Kato K, Tsuzuki A, Taoda H, Torii Y, Kato T, Butsugan Y, J. Mater. Sci., 29(22), 5911, 1994