Issue
Korean Chemical Engineering Research,
Vol.44, No.3, 284-288, 2006
분무열분해법에 의해 제조된(Ca, Sr)2MgSi2O7:Eu2+ 형광체의 발광 특성
Photoluminescence Characteristics of (Ca, Sr)2MgSi2O7:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis
분무열분해법을 이용하여(Ca, Sr)2-yMgSi2O7:Eu2+y 형광체 분말을 제조하고 Eu2+의 농도, 후열처리온도 변화 및 Ca/Sr 비에 따른 발광특성을 조사하였다. 또한, Ca/Sr의 비를 변화시켜 발광특성의 변화를 관찰하였다. Ca2MgSi2O7 나 Sr2MgSi2O7 분말 모두 1,000 °C 이상의 온도에서 열처리를 했을 때 순수한 정방정계 상이 제조되었다. Ca2MgSi2O7:Eu2+y 녹색 형광체는 Eu2+(y)의 농도가 5 mol%, 후열처리 온도가 1,250 °C 일 때 가장 높은 발광 강도는 보였다. (Ca1-x, Srx)1..95MgSi2O7:Eu2+ 0.05의발광 파장은 Sr의 농도가 증가함에 따른 결정장 감소로 인해 524 nm에서 456 nm로 점진적으로 blue shift 되었다. Sr2MgSi2O7:Eu2+는 Sr 자리에 약 10 mol% Ca를 치환시킴으로써 청색 형광체의 발광 강도는 크게 향상되었다. 제조된 분말들은 치밀하지 못하고 다공성 구조를 가져 후 열처리 전에는 구형을 유지하였으나 열처리(900~1,300 °C) 후에는 구형의 형상을 잃고 입자들 간의 응집이 발생하였다.
(Ca, Sr)2-yMgSi2O7:Eu2+y (CMS) phosphor particles were prepared by using a spray pyrolysis process. The luminescent property was optimized by changing the content of Eu and the post-treatment temperature. The luminescence characteristics were also monitored with changing the ratio of Ca to Sr. The pure tetragonal Ca2MgSi2O7 or Sr2MgSi2O7 particles were obtained when the post-treatment temperature was over 1,000 °C. The highest emission intensity of CMS particles were achieved when the concentration (y) of Eu and the treatment temperature were 0.05 and 1,250 °C, respectively. The emission wavelength (λmax) of (Ca1-x,Srx)1.95MgSi2O7:Eu2+0.05 was gradually shifted from 524 nm to 456 nm with increasing the content of Sr due to the reduction of crystal field strength. The emission intensity and its width of Sr2MgSi2O7:Eu was greatly enhanced by substituting Ca of less than 10 mol% for Sr without any significant peak shift. The morphology of as-prepared particles was spherical, but changed to irregular-shaped one after the post treatment at the temperature range from 900 at 1,300 °C.
[References]
  1. Justel T, Nikol H, Ronda C, Angew. Chem.-Int. Edit., 37, 3084, 1998
  2. Shon SJ, J. Korean Institute of Electrical and Electronic Materials Engineers, 14, 20, 2001
  3. Hong CH, J. Korean Institute of Electrical and Electronic Materials Engineers, 14, 25, 2001
  4. Ling J, Chengkang C, Dali M, Chuanli F, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., B103, 271, 2003
  5. Ling J, Chengkang C, Dali M, Chuanli F, Opt. Mater., 27, 51, 2004
  6. Kang YC, Lenggoro IW, Park SB, Okuyama K, J. Phys. Chem. Solids, 60, 1885, 1999
  7. Phosphor Research Society (Japan), Phosphor Hand-book, CRC Press, Boca Raton, 1999
  8. Kang YC, Roh HS, Park SB, Adv. Mater., 12, 451, 2000
  9. Kang KC, Park SB, J. Electrochem. Soc., 147(2), 799, 2000
  10. Poort SHM, Reijnhoudt HM, van der Kuip HOT, Blasse G, J. Alloy. Compd., 241, 75, 1996
  11. Chengtie W, Jiang C, Mater. Lett., 58, 2415, 2004
  12. Poort SHM, Blasse G, J. Lumines., 72, 247, 1997
  13. Poort SHM, Blokpoel WP, Blasse G, Chem. Mater., 7, 1547, 1997
  14. Ronda CR, Amrein T, J. Lumines., 69, 245, 1996
  15. Kim JS, Park YH, Choi JC, Park HL, J. Electrochem. Soc., 152(9), H135, 2005
  16. Oshio S, Kitamura K, Shigeta T, Horii S, Matsuoka T, Tanaka S, Kobayashi H, J. Electrochem. Soc., 146(1), 392, 1999