Issue
Korean Chemical Engineering Research,
Vol.44, No.2, 207-215, 2006
응집 공정상에서 플럭의 성장 특선 고찰
The Characteristic Floc Growth in Coagulation and Flocculation Processes
본 연구의 목적은 응집공정에서 생성되는 플럭의 성상을 가시화하여 PACC의 응집 특성을 고찰하였다. 인공 원수내탁질 입자의 제타전위는 pH 8~9에서 영으로 수렴하였고 이 영역에서 TDS와 전기전도도가 최소값을 나타내 주었다.급속 및 완속 교반의 최적 혼화강도가 관측되었으며, 특히 탁도의 제거에 있어서는 급속교반의 속도경사가 가장 낮은95.1 sec?1에서 최대의 제거율을 나타내었다. 급속교반 후에는 3~5μm의 작은 입자가 급격히 생성되었으며 교반강도가 클수록 더 많은 수의 입자가 생성되었다. 완속교반이 진행될수록 3~5μm의 작은 입자의 수는 급격히 감소하였고7~21μm의 중간 크기의 입자는 증가하는 경향을 나타내주었다. 23μm 보다 큰 입자의 경우는 급속교반의 속도경사가95.1 sec-1에서 가장 많은 수가 생성되었고, 3~5μm의 작은 입자의 경우에는 급속교반의 속도경사가 760.7 sec-1에서가장 많이 생성되었다.
The characteristic floc growth of Al-based coagulants was investigated in the aspect of mixing intensityand visualization of generated flocs during coagulation and flocculation processes. Zeta potential of turbid particles inthe artificial water nearly approached to zero at pH 8-9, in which TDS and conductivity were minimized. The removalrate of turbidity and phosphate was maximized at the optimal mixing intensity of rapid and slow mixing stages. After therapid mixing stage of coagulation process, small particles (3-5μm) were abruptly generated, and higher mixing inten-sity made more numbers of flocs. With the progress of slow mixing stage, the number of small particles were decreasedwith the simultaneous increase of intermediate particles (7-21μm). The number of large particles (>23μm) were max-imized at the lowest rapid mixing intensity of 95.1 sec-1, whereas small particles (<5μm) were maximized at the highestrapid mixing intensity of 760.7 sec-1.
[References]
  1. Kemira K, Handbook on Water Treatment, Helsingburg, Sweden, 1993
  2. Lee CH, Lee SH, Okada M, J. KSEE, 26, 876, 2004
  3. Rossini M, Garrido JG, Galluzzo M, Water Res., 33, 1817, 1999
  4. Kang LS, Han SW, Jung CW, Korean J. Chem. Eng., 18(6), 965, 2001
  5. Bouyer D, Coufort C, Line A, Do-Quang Z, J. Colloid Interface Sci., 292(2), 413, 2005
  6. Francois RJ, Journal AWWA, 80(6), 92, 1988
  7. Dharmappa HB, Verink J, Fujiwara O, Vigneswaran S, Water Res., 27, 513, 1993
  8. Han M, Lawler DF, J. AWWA, 84, 79, 1992
  9. Jeong JK, Yoon TI, Seo HJ, Kim JY, J. KSEE, 5, 67, 1983
  10. Kwak JW, Physico-chemical Principle and Practice of Water Treatment, Yeigigak, 1998
  11. Tambo N, Hozumi H, Water Res., 13, 421, 1979
  12. Wiesner MR, Water Res., 26(3), 379, 1992
  13. Reynolds TD, Richards P, Unit Operations and Processes in Environmental Engineering, Boston, PWS Publishing Company, 1995
  14. Han SW, Lee CW, Kang LS, Korean Chem. Eng. Res., 40(5), 612, 2004
  15. Lee KS, Lee SW, J. KSEE, 26(6), 642, 2004
  16. Lee SW, Lee KS, Kang IJ, Yoon HH, Haam SJ, Kwak JW, J. Korean Ind. Eng. Chem., 16(1), 74, 2005
  17. Kim JP, Han IS, Chung CB, Korean J. Chem. Eng., 20(3), 580, 2003