Issue
Korean Chemical Engineering Research,
Vol.44, No.2, 193-199, 2006
γ-Al2O3에 담지된 Cu-Mn 산화물 촉매의 활성 및 특성
Activity and Characteristics of Cu-Mn Oxide Catalysts Supported on γ-Al2O3
γ-Al2O3에 담지한 Cu-Mn 산화물 촉매에서 톨루엔 완전산화 반응을 160~280℃의 온도 범위에서 고정층 반응기로조사하였다. BET, SEM, TPR, TPO, XPS 및 XRD를 이용하여 촉매 특성분석을 하였다. 톨루엔의 완전산화 반응은280℃ 이하에서 이루어졌으며, 적절한 Cu-Mn 담지량은 15.0 wt%Cu-10.0wt%Mn인 것으로 나타났다. TPR/TPO 및XPS 분석 결과, 15Cu-10Mn 촉매의 산화환원 봉우리가 낮은 온도로 이동하였으며 결합에너지가 높은 값으로 이동하였다. XRD 결과, 고분산된 Mn 산화물과 CuO 보다 Cu1.5Mn1.5O4의 촉매활성 인자로서의 역할이 더욱 우수한 것으로추측되며, 촉매의 활성은 촉매의 산화환원 능력과 촉매의 높은 산화 상태에 기인하는 것으로 사료된다.
The catalytic oxidation of toluene over -Al2O3 supported copper-manganese oxide catalysts in the temper-ature range of 160-280℃ was investigated by employing a fixed bed flow reactor. The catalysts were characterized byBET, scanning electron microscopy (SEM), temperature-programmed reduction(TPR), temperature-programmed oxida-tion(TPO), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction(XRD) techniques. Catalytic oxidation of tol-uene was achieved at the below 280℃, and the optimal content of copper and manganese in the catalyst was found to be15.0 wt%Cu-10.0 wt%Mn. From the TPR/TPO and XPS results, the redox peak of 15Cu-10Mn catalyst shifted to thelower temperature, and the binding energy was shifted to the higher binding energy. Furthermore, It is considered thatCu1.5Mn1.5O4 is superior to Mn oxides and CuO in the role as active factor of catalysts from the XRD results and alsocatalytic activities are dependent on the redox ability and high oxidation state of catalysts.
[References]
  1. Soichiro S, J. Env. Hi-Tech., 9, 15, 2004
  2. Cooper CD, Alley FC, Air Pollution Control, 2nd ed., Waveland Press, 337, 1994
  3. Ihm SK, Jun YD, Kim DC, Jeong KE, Catal. Today, 93(95), 149, 2004
  4. Centeno MA, Paulis M, Montes M, Odriozola JA, Appl. Catal. A: Gen., 234(1-2), 65, 2002
  5. Li WB, Chu WB, Zhuang M, Hua J, Catal. Today, 93(95), 205, 2004
  6. Mazzocchia C, Kaddouri A, J. Mol. Catal. A-Chem., 204(205), 647, 2003
  7. Terribile D, Trovarelli A, de Leitenburg C, Primavera A, Dolcetti G, Catal. Today, 47(1-4), 133, 1999
  8. Kim SC, J. Hazard. Mater., B91, 285, 2002
  9. Papavasiliou J, Avgouropoulos G, Ioannides T, Catal. Commun., 6, 497, 2005
  10. Cheon TJ, Kim HJ, Choi SW, J. Korean. Soc. Atmos. Env., 21(2), 161, 2005
  11. Alonso L, Palacios JM, Garcia E, Moliner R, Fuel Process. Technol., 62(1), 31, 2000
  12. Tang X, Li Y, Huang X, Xu Y, Zhu H, Wang J, Shen W, Appl. Catal. B: Environ., 62, 265, 2005
  13. Kim YH, Lee HI, J. Korean Ind. Eng. Chem., 10(8), 1161, 1999
  14. Chon HZ, Seo G, Catalysis an Introduction, 4rd ed., Hanlimwon, Seoul, 2002
  15. http://www.lasurface.com
  16. Niemantsverdriet JW, Spectroscopy in Catalysis, second., Netherlands, 2000
  17. Wang CH, Chemosphere, 55, 11, 2004