Issue
Korean Chemical Engineering Research,
Vol.44, No.2, 187-192, 2006
헤테로폴리산을 포함한 직접 메탄올 연료전지용 나피온/폴리페닐렌옥사이드 복합막의 제조
Preparation of Composite Nafion/polyphenylene Oxide(PPO) with Hetropoly Acid(HPA) Membranes for Direct Methanol Fuel Cells
폴리페닐렌 옥사이드(PPO)를 이용하여 헤테로폴리산(HPA)을 고정시킨 박막 제조를 통해 새로운 고분자 복합막을제조하고 특성을 분석하였다. 헤테로폴리산인 텅스토인산(PWA)이나 몰리브도인산(PMA)을 혼합한 PPO 박막은 서로같은 용매에 녹지 않으므로 혼합용매를 사용하여 제조하였다. 본 연구에서는 PWA를 녹이기 위한 용매로 메탄올을PPO를 녹이기 위한 용매로 클로로포름을 사용하였으며, 혼합된 PPO-PWA 용액을 유리판 위에서 제막하였다. 다공성의 PPO-PWA 박막에 나피온 혼합물을 사용하여 복합막을 제조하였고, 제조된 복합막은 이온 전도도와 메탄올 투과도를 측정하여 특성화하였다. PPO-PWA 복합막의 형태와 구조는 SEM(scanning electron microscopy)과 EDS(energydispersive spectrometer)로 관찰하였고, 복합막은 직접 메탄올 연료전지(DMFC)용 전해질로서의 성능을 시험하였다.PPO-PWA 구조를 가지고 있는 복합막을 이용함으로써 DMFC 내에서의 메탄올 투과 현상을 66% 줄일 수 있었다.
The preparation and characterization of new polymer composite membranes containing polyphenyleneoxide (PPO) thin films with hetropoly acid (HPA) are presented. PPO thin films with phosphotungstic acid (PWA) orphosphomolybdic acid (PMA) have been prepared by using the solvent mixture. The PWA and PPO can be blendedusing the solvent mixture, because PPO and PWA are not soluble in the same solvent. In this study, methanol was usedas a solvent dissolving PWA and chloroform was used as a solvent dissolving PPO. PPO-PWA solutions were cast ontoa glass plate with uniform thickness. The composite membranes were prepared by casting Nafion mixture on porousPPO-PWA films. The morphology and structure of these PPO-PWA films were observed with scanning electron micros-copy (SEM) and energy dispersive spectrometer (EDS). The composite membranes were characterized by measuringtheir ion conductivity and methanol permeability. The performance was evaluated with composite membranes as elec-trolytes in fuel cell conditions. The methanol cross-over of composite membranes containing PPO-PWA barrier films inthe DMFC reduced by 66%.
[References]
  1. Smitha B, Sridhar S, Khan AA, J. Membr. Sci., 225(1-2), 63, 2003
  2. Appleby AJ, Foulkes FR, “Fuel Cell Handbook,” Van Nostrand Reinhold, N.Y., 3-7, 1989
  3. Yu J, Yi B, Xing D, Liu F, Shao Z, Fu Y, J. Power Sources, 4937, 1, 2002
  4. Jorissen L, Gogel V, Kerres J, Garche J, J. Power Sources, 105(2), 267, 2002
  5. Kordesh KV, J. Electrochem. Soc., 125(1), 77, 1978
  6. Vielstich W, Lamm A, Gasteiger HA, “Handbook of Fuel Cells,” John Wiley & Sons Ltd., England, 2003
  7. Scott K, Taama W, Cruickshank J, J. Appl. Electrochem., 28(3), 289, 1998
  8. Shao ZG, Wang X, Hsing IM, J. Membr. Sci., 210(1), 147, 2002
  9. Cruickshank J, Scott K, J. Power Sources, 70(1), 40, 1998
  10. Dimitrova P, Friedrich KA, Stimming U, Vogt B, Solid State Ion., 150(1-2), 115, 2002
  11. Dimitrova P, Friedrich KA, Vogt B, Stimming U, J. Electroanal. Chem., 532(1-2), 75, 2002
  12. Kim YS, Yamazaki Y, Solid State Ion., 176(11), 1079, 2005
  13. Sauk J, Byun J, Kang Y, Kim H, Korean Chem. Eng. Res., 42(5), 619, 2004
  14. Hatanaka T, Hasegawa N, Kamiya A, Kawasumi M, Morimoto Y, Kawahara K, Fuel, 81(17), 2173, 2002
  15. Li L, Xu L, Wang Y, Mater. Lett., 57(8), 1406, 2003
  16. Lee JK, Song IK, Lee WY, Fuel Journal of Molecular Catalysis A: Chemical, 120(1), 207, 1997
  17. Kozhenvnikov IV, Matveev KIII, Appl. Catal., 5(2), 135, 1983
  18. Song IK, Lee JK, Lee WY, Appl. Catal. A: Gen., 119(1), 107, 1994
  19. Okuhara T, Mizuno N, Misono M, Adv. Catal., 41, 113, 1996
  20. Sauk J, Byun J, Kim H, J. Power Sources, 132(1-2), 59, 2004
  21. Lee WY, Song IK, HWAHAK KONGHAK, 38(3), 317, 2000