Issue
Korean Chemical Engineering Research,
Vol.44, No.2, 179-186, 2006
TiO2를 이용한 염료감응형 태양전지의 제조 및 특성
The Preparation and Property of Dye Sensitized Solar Cells using TiO2
TiO2를 나노튜브(nanotube)와 나노입자(nanoparticle)의 두 가지 형태로 제조하여 닥터 브레이드 방법과 450℃에서의 소결 공정을 통하여 다공성막으로 제조하였다. 이 다공성막을 작용물질로 사용하여 염료감응형 태양전지를 제조하고 그 특성을 조사하였다. TiO2 나노입자는 수소화 티탄염 나노튜브를 180℃에서 24시간 동안 가수열분해 처리함으로써 합성하였다. 이 TiO2 나노입자를 다공성막으로 사용하여 제작한 염료감응형 태양전지의 에너지 효율(η)은 8.07%이며, 개방전압(open-circuit potential, VOC), 단락전류(short-circuit current, Isc)와 fill factor(FF) 값은 각각 0.81V, 18.29mV/cm2와 66.95%이었다. 나노튜브 TiO2를 제조할 경우에는 NaOH 용액의 농도를 3M과 5M로 변화시켰다. 그 결과 3MNaOH 용액에서 합성된 나노튜브 TiO2를 다공성막으로 사용하여 제작된 염료감응형 태양전지의 에너지 효율(η)은6.19%이었으며, Voc, Isc와 FF 값은 각각 0.77 V, 12.41mV/cm2와 64.49%이었다. 반면에 5M NaOH에서는 전자이동성이 좋지 않아 효율이 4.09%로 감소하였다. 본 연구 결과 가수열분해법에 의해 제조한 TiO2 나노입자로 제조한 염료감응형 태양전지의 효율이 가장 높았다.
Two types of TiO2, nanotube and nanoparticle, were used for the mesoporous coatings by doctor bladetechnique followed by calcining at 450℃. The coatings were used as working materials for dye-sensitized solar cells(DSCs) later on and their photovoltaic characterization was carried out. The nanoparticle was synthesized from hydro-gen titanate nanotube by hydrothermal treatment at 180℃ for 24 hr. The solar energy conversion efficiency (η) of DSCsprepared by this nanoparticle reached 8.07% with VOC (open-circuit potential) of 0.81V, Isc (short-circuit current) of18.29mV/cm2, and FF (fill factor) of 66.95%, respectively. For the preparation of nanotube, the concentration of NaOHsolution varied from 3 M to 5 M. In the case of DSCs fabricated with nanotubes from 3M NaOH solution, the η reached6.19% with Voc of 0.77 V, Isc of 12.41mV/cm2, and FF of 64.49%, respectively. On the other hand, in the case of 5Msolution, the photovoltaic η was decreased with 4.09% due to a loss of photocarriers. In conclusion, it is demonstratedthat the solar energy conversion efficiency of DSCs made from TiO2 nanoparticle showed best results among thoseunder investigation.
[References]
  1. O’Regan B, Gratzel M, Nature, 353, 737, 1991
  2. Grtzel M, Nature, 414, 338, 2001
  3. Hara K, Tachibana Y, Ohga Y, Shinpo A, Suga S, Sayama K, Sugihara H, Arakawa H, Sol. Energy Mater. Sol. Cells, 77(1), 89, 2003
  4. Qiu FL, Fisher AC, Walker AB, Electrochem. Commun., 5(8), 711, 2003
  5. Nguyen TV, Lee HC, Yang OB, Sol. Energy Mater. Sol. Cells, In press, 2005
  6. Park NG, J. Korean Ind. Eng. Chem., 15(3), 268, 2004
  7. Kim KY, Lee KY, Kwon OK, Shin DM, Sohn BC, Choi JH, Synth. Met., 110, 207, 2000
  8. Houzouil T, Saito N, Kudo A, Sakata T, Chem. Phys. Lett., 254(1-2), 109, 1996
  9. Na Y, Song S, Park Y, Korean J. Chem. Eng., 22(2), 196, 2005
  10. Nam WS, Han GY, Korean J. Chem. Eng., 20(1), 180, 2003
  11. Lee YG, Lee TG, Kim WS, Korean Chem. Eng. Res., 43(1), 170, 2005
  12. Kwon TR, Roo WH, Lee CW, Lee WM, Korean Chem. Eng. Res., 43(1), 1, 2005
  13. Li Y, Hagen J, Schaffrath W, Otschik P, Haarer D, Sol. Energy Mater. Sol. Cells, 56(2), 167, 1998
  14. Kambe S, Murakoshi K, Kitamura T, Wada Y, Yanagida S, Kominami H, Kera Y, Sol. Energy Mater. Sol. Cells, 61(4), 427, 2000
  15. Uchida S, Chiba R, Tomiha M, Masaki N, Shirai M, Electrochemistry, 70(6), 418, 2002
  16. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Niihara K, Langmuir, 14(12), 3160, 1998
  17. Kasuga T, Hiramatsu M, Hoson A, Sekino T, Nihara K, Adv. Mater., 11(15), 1308, 1999
  18. Godbole VP, Kim GS, Dar MA, Kim YS, Seo HK, Khang G, Shin HS, Nanotechnology, 16(8), 1186, 2005
  19. Godbole VP, Kim YS, Kim GS, Dar MA, Shin HS, Electrochim. Acta, in accepted
  20. Seo DS, Lee JK, Kim H, J. Cryst. Growth, 229, 428, 2001
  21. Seo DS, Lee JK, Lee EG, Kim H, Mater. Lett., 51, 115, 2001
  22. Chen YF, Lee CY, Yeng MY, Chin HT, Mater. Chem. Phys., 81, 39, 2003
  23. Kim GS, Godbole VP, Kim YS, Seo HK, Shin HS, Electrochem. Commun., in accepted