Issue
Korean Chemical Engineering Research,
Vol.44, No.2, 160-165, 2006
Cu Reflow를 이용한 Pd-Cu-Ni 합금 수소분리막 특성
Characteristic of Pd-Cu-Ni Alloy Hydrogen Membrane using the Cu Reflow
니켈 분말을 이용하여 제조된 다공성 니켈 지지체 위에 팔라듐-구리-니켈 합금 수소 분리막을 제조하였다. 다공성니켈 지지체는 열적안정성과 수소취성에 강한 모습을 나타내었으며, 다공성 니켈 지지체에 기존의 습식 방식인 염산에 의한 표면 전처리 방식을 건식 방식인 플라즈마 표면개질로 대체하였다. 다공성 니켈 지지체의 기공을 매립하기 위해 전해도금방식으로 2μm의 두께로 코팅하였으며, 그 후 니켈 도금된 지지체 위에 스퍼터 방식으로 팔라듐을 4μm,구리를 0.5μm의 두께로 코팅하였다. 이와 같이 제조된 시편을 700℃에서 1시간 구리 리플로우를 통해 미세기공이 없는 매우 치밀한 팔라듐-구리-니켈 합금 분리막을 제조하였다. 그 결과 팔라듐-구리-니켈 합금 수소분리막은 다공성 니켈지지체와 좋은 접착성을 가지고 있으며 수소-질소 혼합가스에서 무한대의 분리도 값을 나타내었다.
A Pd-Cu-Ni alloyed hydrogen membrane has fabricated on porous nickel support formed by nickel pow-der. Porous nickel support made by sintering shows a strong resistance to hydrogen embrittlement and thermal fatigue.Plasma surface modification treatment is introduced as pre-treatment process instead of conventional HCl wet activa-tion. Nickel was electroplated to a thickness of 2μm in order in to fill micropores at the nickel support surface. Palla-dium and copper were deposited at thicknesses of 4μm and 0.5μm, respectively, on the nickel coated support by DCsputtering process. Subsequently, copper reflow at 700℃ was performed for an hour in H2 ambient. And, as a result Pd-Cu-Ni composite membrane has a pinhole-free and extremely dense microstructure, having a good adhesion to theporous nickel support and infinite hydrogen selectivity in H2/N2 mixtures.
[References]
  1. Cheng YS, Yeung KL, J. Membr. Sci., 158(1-2), 127, 1999
  2. Marshall AD, Munro PA, Tragardh G, Desalination, 91(1), 65, 1993
  3. Lee SJ, Cho IH, Kim KY, Yang SM, Park SB, HWAHAK KONGHAK, 33(1), 29, 1995
  4. Mcbride RB, McKinley DL, Chem. Eng. Prog., 61, 81, 1965
  5. Lewis FA, “The Palladium Hydrogen System,” Academic Press, London, 1967
  6. Hoang HT, Tong HD, Gielens FC, Jansen HV, Elwenspoek MC, Mater. Lett., 58, 525, 2004
  7. Ho CC, Zydney AL, J. Membr. Sci., 155(2), 261, 1999
  8. Nam SE, Lee KH, J. Membr. Sci., 170(1), 91, 2000
  9. Jun CS, Lee KH, J. Membr. Sci., 176(1), 121, 2000
  10. Checchetto R, Bazzanella N, Patton B, Miotello A, J. Membr. Sci., 177-178, 73-79, 2004
  11. Nam SE, Lee SH, Lee KH, J. Membr. Sci., 153(2), 163, 1999
  12. Ryi SK, Park JS, Choi SH, Cho SH, Kim SH, Sep. Purif. Technol., to be accepted
  13. Jemaa N, Shu J, Kaliaguine S, Grandjean BP, Ind. Eng. Chem. Res., 35(3), 973, 1996
  14. Mardilovich PP, She Y, Ma YH, Rei MH, AIChE J., 44(2), 310, 1998
  15. Kim DW, Kim DG, Lee EJ, Lee WJ, Lee YS, “Method and Apparatus for Coating Electromagnetic Wave Shielding Films,” United States Patent, US 6,406,601 B1, 2002
  16. Kim DW, Kim DG, Park JK, Km SH, J. Kor. Mater. Res., 12, 740, 2002
  17. Jayaraman V, Lin YS, Pakala M, Lin RY, J. Membr. Sci., 99(1), 89, 1995
  18. Kim DW, Um KY, Kim HG, Lee IS, Kim SH, Park JS, Jpn. J. Appl. Phys., 44, 233, 2005
  19. Kulprathipanja A, Alptekin GO, Falconer JL, Way JD, J. Membr. Sci., 254(1-2), 49, 2005
  20. Lee SY, Kim DW, Rha SK, Park CO, Park HH, J. Vac. Sci. Technol. B, 16(5), 2902, 1998
  21. Kim DW, Kim HM, “Method of Patterning and Manufacturing Semiconductor Devices,” Korea Patent 0058667, 1999
  22. Roa F, Way JD, McCormick RL, Paglieri SN, Chem. Eng. J., 93(1), 11, 2003