Issue
Korean Chemical Engineering Research,
Vol.44, No.1, 97-105, 2006
대장균의 동역학 네트워크 모델을 이용한 L-threonine 생합성에 관한 모사 연구
Simulation Study of Dynamic Network Model for L-Threonine Biosynthesis in Escherichia coli
본 연구에서는 대장균 내에서 L-threonine의 생합성에 영향을 미치는 저해제들에 대한 모사 연구를 위하여 L-aspartate 에서 L-threonine까지의 아미노산 생합성 대사 네트워크를 문헌 및 데이터베이스를 통해 구축하였다. 또한 L-threonine 생합성에 영향을 미치는 저해제들을 수학적으로 모델링하여 효소 반응식에 적용시켰다. 모사 연구를 위해 초기 농도 값을 L-aspartate 5 mM, ATP 5 mM, NADPH 2 mM으로 설정하고 저해제의 농도 변화에 따른 세포내 대사 물질들의 농도변화를 확인하였다. 그 결과 저해제 L-lysine, L-methionine, L-glutamate는 저해제 농도 변화에 따라 대사 물질들 의 농도 변화가 없었다. 그러나 저해제 L-serine, L-cysteine 그리고 L-threonine의 경우 저해제의 농도 변화에 따라 세포내 대사물질들의 농도 곡선이 서로 다른 결과를 얻었다. 대장균 내에서 소비되어진 L-aspartate의 농도는 세포 내 생성되는 L-threonine과는 관련이 없었고, 생성되는 L-threonine의 농도는 세포 내에 축적된 D,L-aspartic β-semialdehyde 에 반비례하였다.
In order to investigate the effect of inhibitors on L-threonine biosynthesis in Escherichia coli, we have constructed a metabolic network model of amino acid biosynthesis from L-aspartate to L-threonine by using available informations from literatures and databases. In the model, the effects of inhibitors on the biosynthesis of L-threonine was included as an appropriate mathematical form. For simulation study, we used initial values as L-aspartate 5 mM, ATP 5 mM, NADPH 2 mM, and observed the concentration changes of intermediate metabolites over concentration changes of respective inhibitors. As a result, we found that concentrations of intermediate metabolites were not significantly changed over concentration changes of L-lysine, L-methionine, and L-glutamate. But, there were considerable changes of intermediates over concentration changes of L-serine, L-cysteine, and L-threonine, which can be considered as essential effectors on L-threonine synthesis. Contrary, the synthesis of L-threonine seems to be not related to the amounts of L-aspartate, and inversely proportional to the accumulated amount of D,L-aspartic β-semialdehyde.
[References]
  1. Stephanopoulos GN, Aristidou AA, Nielsen J, Academic press, 1998
  2. Faurie R, Kimura E, Marz A, Mockel B, Mueller U, Pfefferle W, Thommel J, Springer Verlag, 2003
  3. Chassagnole C, Rais B, Quentin E, Fell DA, Mazat JP, Biochem. J., 356(2), 415, 2001
  4. Rais B, Chassagnole C, Letellier T, Fell DA, Mazat JP, Biochem. J., 356(2), 425, 2001
  5. Chassagnole C, Fell DA, Rais B, Kudla B, Mazat JP, Biochem. J., 356(2), 433, 2001
  6. http://www.biocyc.org
  7. http://www.genome.ad.jp/6.kegg/.
  8. http://www.empproject.com
  9. http://www.brenda.uni-koeln.de/.
  10. Segel IH, Wiley, "Enzyme Kinetics: Behaviour and Analysis of Rapid Equilibrium and Steady-State", 1975
  11. http://www.copasi.org/tiki-index.php.
  12. Starnes WL, Munk P, Maul SB, Cunningham GN, Cox DJ, Shive W, Biochemistry, 11(5), 677, 1972
  13. Veron M, Falcoz-Kelly F, Cohen GN, Eur. J. Biochem., 28(4), 520, 1972
  14. Keng YF, Viola RE, Arch. Biochem. Biophys., 335(1), 73, 1996
  15. Truffa-Bachi P, Academic Press, 8, 509, 1973
  16. Funkhouser JD, Abraham A, Smith VA, Smith WG, J. Biol. Chem., 249(17), 5478, 1974
  17. Hama H, Kayahara T, Tsuda M, Tsuchiya T, J. Biochem., 109(4), 604, 1991
  18. Wedler FC, Ley BW, J. Biol. Chem., 268(7), 4880, 1993
  19. James CL, Viola RE, Biochemistry, 41(11), 3720, 2002
  20. Burr B, Walker J, Truffa-Bachi P, Cohen GN, Eur. J. Biochem., 62(3), 519, 1976
  21. Huo X, Viola RE, Biochemistry, 35(50), 16180, 1996
  22. Huo X, Viola RE, Arch. Biochem. Biophys., 330(2), 373, 1996
  23. Theze J, Kleidman L, St Girons I, J. Bacteriol., 118(2), 577, 1974