Issue
Korean Chemical Engineering Research,
Vol.44, No.1, 52-57, 2006
맥주발효 폐액을 이용한 미생물 셀룰로오스 생산
Production of Bacterial Cellulose Using Waste of Beer Fermentation Broth
에탄올과 함께 탄소, 질소원을 함유한 맥주 폐 발효액을 저렴한 대체배지로 사용하고 Gluconacetobacter hansenii PJK(KCTC 10505 BP) 균주를 이용하여 미생물셀룰로오스를 생산하였다. 맥주 폐 발효액은 기본배지보다도 탄소원과 질소원이 풍부하였으며 미량의 황과 4% 이상의 에탄올을 함유하였다. 진탕배양에서 맥주 폐 발효액을 사용하여 생산된 셀룰로오스량은 기본배지를 사용하여 생산된 셀룰로오스량과 필적하였다. 교반배양에서는 셀룰로오스 생산균주(Cel+균주)가 셀룰로오스를 생산하지 못하는 균주(Cel. 돌연변이주)로 전환되는 률은 낮았지만 셀룰로오스 생산량은 감소하였다.
Bacterial cellulose (BC) was produced by Gluconacetobacter hansenii PJK (KCTC 10505 BP) strains using the waste of beer fermentation broth. It contained more C and N than a basal medium with a small amount of Sand more than 4% ethanol. The amount of BC produced in a shaking culture using the waste of beer fermentation broth was nearly the same as that of a basal medium. The production of BC decreased in a shear stress field in a jar fermenter although the conversion of cellulose producing (Cel+) cells to non-cellulose producing (Cel.) mutants was not severe.This study showed that the waste of beer fermentation broth is an inexpensive carbon, nitrogen source with ethanol and thus a worthy substitute for the conventional medium for BC production.
[References]
  1. Brown AJ, J. Chem. Soc., 49, 432, 1886
  2. Delmer DP, Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 245, 1999
  3. Ross P, Mayer R, Benziman M, Microbiol. Rev., 55, 35, 1991
  4. Matthysse AG, J. Bacteriol., 154, 906, 1983
  5. Rainer J, Luiz FF, Polym. Degrad. Stabil., 58, 101, 1998
  6. Yamanaka S, Watanabe K, "Applications of Bacterial Cellulose in Cellulosic Polymers", pp. 207-215. In R Gillbert (ed), Cellulosic Polymers, Blends and Composites, Hanser Inc., Cincinnati, OH, USA.
  7. Embuscado ME, Marks JS, BeMiler JN, Food Hydrocolloids, 8, 419, 1994
  8. Yoshino T, Asakura T, Toda K, J. Ferment. Bioeng., 81(1), 32, 1996
  9. Klemm D, Schumann D, Udhard U, Marsch S, Prog. Polym. Sci, 26, 1561, 2001
  10. Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, Uryn M, J. Mater. Sci., 24, 3141, 1989
  11. Chanliud E, Gidley MJ, Plant J., 20, 25, 1999
  12. Bettocchi C, Delneri D, Signore S, Weng Z, Bruschi CV, Biochim. Biophys. Acta., 1336, 211, 1997
  13. Park SH, Yang YK, Hwang JW, Lee CS, Pyun YR, Kor. J. Appl. Microbiol. Biotechnol., 25, 598, 1997
  14. Ponyi T, Szabo L, Nagy T, Orosz L, Simpson PJ, Williamson MP, Gilbert HJ, J. Biochem., 39, 985, 2000
  15. Shibazaki H, Kuga S, Onabe F, Usuda M, J. Appl. Polym. Sci., 50, 965, 1993
  16. Vandamme EJ, De Baets S, Vanbaelen A, Joris K, DeWulf P, Polym. Degrad. Stabil., 59, 93, 1998
  17. Raghothama S, Simpson PJ, Szabo L, Nagy T, Gilbert HJ, Williamson MP, J. Biochem., 39, 978, 2000
  18. Sieger CHN, Kroon AGM, Batelaan JG, Van Ginkel CG, Carbohydr. Polym., 27, 137, 1995
  19. Yu XC, Atalla RH, J. Biological. Macromolecules, 19, 145, 1996
  20. Jeong YJ, Lee IS, Food Industry and Nutrition, 5, 25, 2000
  21. Yoshinaga F, Tonouchi N, Watanabe K, Biosci. Biotechnol. Biochem., 61, 219, 1997
  22. Park JK, Park YH, Jung JY, Biotechnol. Bioprocess. Eng., 8, 83, 2002
  23. Son HJ, Lee OM, Kim YG, Park YK, Lee SJ, Kor. J. Biotechnol. Bioeng., 15, 573, 2000
  24. Valla S, Kjosbakken J, J. Beneral Microb., 128, 1401, 1981
  25. Park JK, Jung JY, Park YH, Biotechnol. Lett., 25(24), 2055, 2003