Issue
Korean Chemical Engineering Research,
Vol.43, No.3, 407-411, 2005
분무 열분해 공정에 의해 합성된 미세 YAG:Tb 형광체
Fine Size YAG:Tb Phosphor Particles Prepared by Spray Pyrolysis
분무용액에 다양한 융제들을 도입하여 분무열분해법에 의해 YAG:Tb(Y3Al5O12:Tb) 형광체들을 합성하였다. 융제의 종류, 유기 첨가물 및 후열처리 온도 등이 YAG:Tb 형광체의 형태, 결정성 및 발광 특성에 미치는 영향 등을 조사하였다. 유기첨가물로 사용된 구연산과 에틸렌 글리콜은 고온의 열처리 과정에서 YAG:Tb 형광체의 형태 파괴 없이 발광 특성을 증대시켰다. 반면에 다량의 융제를 포함한 분무용액으로부터 분무열분해 공정에 의해 합성된 전구체 분말은 1300oC에서의 후열처리 후에 구형의 형태가 사라졌다. 리튬 탄산염을 융제로 함유한 분무용액으로부터 합성된 YAG:Tb 형광체는 후열처리 후에 미세하면서도 균일한 형태를 가졌다. 융제로서 사용된 리튬 탄산염은 YAG:Tb 형광체의 발광 휘도 개선에도 효과적이었다. 리튬 탄산염을 융제로 첨가한 경우에 합성된 YAG:Tb 형광체의 최적의 발광 세기는 융 제를 첨가하지 않은 경우에 합성된 형광체의 발광세기의 189%였다.
YAG:Tb(Y3Al5O12:Tb) phosphor particles were prepared by spray pyrolysis from spray solution containing various types of flux materials. The effects of type of flux, organic material and post-treatment temperature on the characteristics of morphology, crystallinity and photoluminescence of YAG:Tb phosphor particles were investigated. Citric acid and ethylene glycol used as organic additive improved the photoluminescence intensity of the YAG:Tb phosphor particles without destruction of the morphology after post-treatment at high temperature. However, the spherical shape of the precursor particles obtained by spray pyrolysis from spray solution containing high amount of flux material disappeared after post-treatment at 1300℃. YAG:Tb phosphor particles prepared from spray solution containing lithium carbonate flux had fine size and regular morphology after post-treatment. Lithium carbonate used as flux material was also efficient in improvement of the photoluminescence intensity of the YAG:Tb phosphor particles. The optimum photoluminescence intensity of the YAG:Tb phosphor particles prepared from spray solution containing lithium carbonate flux was 189% of that of the phosphor particles prepared from spray solution without flux material.
[References]
  1. Lu Ch, Hsu WT, Dhanaraj J, Jagannathan R, J. European Ceram. Soc., 24, 3723, 2004
  2. Hakuta Y, Haganuma T, Kiwamu S, Adschiri T, Arai K, Mater. Res. Bull., 38, 1257, 2003
  3. Choe JY, Ravichandran D, Blomquist SM, Kirchner KW, Forsythe EW, Morton DC, J. Lumines., 93, 119, 2001
  4. Zhang JJ, Ning JW, Liu XJ, Pan YB, Huang LP, Mater. Lett., 57, 3077, 2003
  5. Chen TM, Chen SC, Yu CJ, J. Solid State Chem., 144, 437, 1999
  6. Kang YC, Roh HS, Park SB, Adv. Mater., 12, 451, 2000
  7. Kim EJ, Kang YC, Park HD, Ryu SK, Mater. Res. Bull., 38, 515, 2003
  8. Roh HS, Kim EJ, Kang HS, Kang YC, Park HD, Park SB, J. Appl. Phys., 42, 2741, 2003
  9. Kang YC, Roh HS, Park SB, J. European Ceram. Soc., 22, 1661, 2002