Issue
Korean Chemical Engineering Research,
Vol.43, No.3, 371-379, 2005
활성탄에서의 H2/CH4/C2H4 순수 기체와 이성분 혼합기체의 흡착평형
Pure and Binary Mixture Gases Adsorption Equilibria of Hydrogen/Methane/Ethylene on Activated Carbon
활성탄 흡착제(Calgon co.)에 대하여 수소, 메탄 그리고 에틸렌의 단일성분 흡착평형과 이들의 혼합가스의 흡착평형 을 정적부피법으로 293.15 K, 303.15 K 그리고 313.15 K의 온도와 18 atm의 압력 이하에서 측정하였다. 순수 기체의 흡착등온선을 이용하여 혼합성분의 흡착평형을 예측하였고 실험데이터와 비교하였다. 사용한 모델식은 확대 Langmuir 모델, 확대 Langmuir-Freundlich 모델, 이상 흡착 용액 이론 그리고 빈자리 용액 모델이다. 모델식들은 비교적 정확한 예측치를 보였으며, 이 중 확대 L-F 모델이 혼합 기체의 흡착평형을 다른 모델식보다 좋은 예측결과를 보여줬다.
Adsorption equilibria of the gases H2, CH4, and C2H4 and their binary mixtures on activated carbon (Calgon co.) have been measured by static volumetric method in the pressure range of 0 to 18 atm at temperatures of 293.15, 303.15, and 313.15 K. From the parameters obtained from single component adsorption isotherm, multi-component adsorption equilibria could be predicted and compared with experimental data. The binary experimental data were applied to four models : extended Langmuir, extended Langmuir-Freundlich, Ideal Adsorbed Solution theory (IAST), and Vacancy Solution Model (VSM). The models were found to describe the experimental data with a reasonable accuracy. Extended L-F model predicts equilibria of mixture better than any other model.
[References]
  1. Jang DG, Shin HS, Kim JN, Cho SH, Suh SS, HWAHAK KONGHAK, 37(6), 882, 1999
  2. Park JH, Kim JN, Cho SH, AIChE J., 46(4), 790, 2000
  3. Sircar S, Kurma R, Ind. Eng. Chem. Process Des. Dev., 22(2), 271, 1983
  4. Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56, 1995
  5. Yang J, Cho C, Baek KH, Lee CH, HWAHAK KONGHAK, 35(4), 545, 1997
  6. Yang RT, "Gas Separation by Adsorption Processes", Butter-worth, Boston, MA, 1987
  7. Serban M, Lewis MA, Marshall CL, Doctor RD, Energy Fuels, 17(3), 705, 2003
  8. Ritter JA, Yang RT, Ind. Eng. Chem. Res., 26(8), 1679, 1987
  9. Valenzuela DP, Myers AL, "Adsorption Equilibrium Data Handbook", Prentice Hall, Englewood Cliffs, NJ, 1989
  10. Myers AL, Prausnitz JM, AIChE J., 11(1), 121, 1965
  11. Suwanayuen S, Danner RP, AIChE J., 26(1), 68, 1980
  12. Suwanayuen S, Danner RP, AIChE J., 26(1), 76, 1980
  13. Ahmadpour A, Wang K, Do DD, AIChE J., 44(3), 740, 1998
  14. Ruthven DM, "Princicles of Adsorption and Adsorption Processes", Wiley, New York, 1984
  15. Yun JH, Park HC, Moon H, Korean J. Chem. Eng., 13(3), 246, 1996
  16. Yun JH, Choi DK, Kim SH, AIChE J., 45(4), 751, 1999
  17. Talu O, Zwiebel I, AIChE J., 32(8), 1263, 1986
  18. Cochran TW, Kabel RL, Danner RP, AIChE J., 31(2), 268, 1985
  19. Kim J, Moon J, Lee H, HWAHAK KONGHAK, 27(3), 245, 1989
  20. Han S, Lee H, HWAHAK KONGHAK, 33(6), 720, 1995
  21. Choi BU, Choi DK, Lee YW, Lee BK, J. Chem. Eng. Data, 48(3), 603, 2003
  22. Brunauer S, Deming LS, Deming WE, Teller EJ, J. Am. Chem. Soc., 62, 1723, 1940
  23. BUSS E, Gas Sep. Purif., 9(3), 189, 1995