Issue
Korean Chemical Engineering Research,
Vol.43, No.3, 360-365, 2005
Simulated Moving Bed Chromatography의 시각적 설명
Visual Demonstration of Simulated Moving Bed
SMB는 연속 크로마토그래피 공정으로써 회분식 크로마토그래피보다 이동상의 소비를 줄이고 높은 농도, 높은 수율의 생산성의 장점을 가지고 있다. 그러나 운전상의 복잡성 때문에 이 공정을 이해하기 어렵다. 본 실험에서는 서로 다른 색깔을 지닌 두 물질의 분리를 시도함으로써 공정의 이해를 용이하게 하였다. 실험에서 사용된 물질은 Blue dextran 과 Orange G로서 각각 파란색과 오렌지 색을 띤다. 실험은 4개의 존으로 구성된 SMB로써 zone VI에서 zone I으로 재순환 되지 않는 열린 루프계가 적용되었다. 운전 조건은 Standing wave design를 이용하였으며 extract와 raffinate에 서 높은 순도와 수율을 가질 수 있도록 디자인하였다. 단일 칼럼을 이용한 실험을 통해서 여러 유량에서 비선형 흡착 평형식과 실험식으로부터 물질전달계수를 얻었다. Extract와 raffinate의 농도분포 곡선은 모사 결과와 거의 일치하였다. Extract와 raffinate의 순도는 99.49%와 98.89%이며 두 물질의 수율은 모두 98%였다.
SMB (simulated moving bed) is a continuous chromatographic process by shifting periodically port position. Binary of mixture, Blue dextran and Orange G, was separated by SMB. These components have unique color individually, that is, Blue dextran is blue and Orange G is orange. It is easy to understand SMB process by observing the shift of color changes in SMB. These components was not adsorbed to stationary phase and isolated by difference of size exclusion factor. Mass transfer coefficient was determined by single pulse test under several flow rate conditions. Operation condition was obtained by standing wave theory and optimized for high purities in extract and raffinate streams. Experiment was performed in open loop 4 zone (2-2-2-2) SMB. There are several advantages in open loop SMB, where extract is product for high purity. It is also easy to control flow rate and monitor experimental state during operation. Experimental, extract and raffinate history is well fitted with simulation results, however, column concentration profile is a little different from simulation results. Purities were 99.5% for extract and 98.9% for raffinate and extract and raffinate yields were obtained as 98.9% and 99.4% respectively.
[References]
  1. Broughton DB, Chem. Eng. Prog., 64(1), 60, 1968
  2. Broughton DB, Neuzil RW, Pharis JM, Brearley CS, Chem. Eng. Prog., 66(1), 70, 1970
  3. Ching CB, Chu KH, Hidajat K, Ruthven DM, Chem. Eng. Sci., 48(7), 1343, 1993
  4. Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245, 1997
  5. Wu D, Xie Y, Ma Z, Wang NHL, Ind. Eng. Chem. Res., 1937(21), 4023, 1998
  6. Xie Y, Wu D, Ma Z, Wang NHL, Ind. Eng. Chem. Res., 39(10), 1993, 2000
  7. Hashimoto K, Adachi S, Shirai Y, Agric. Biol. Chem., 52(11), 2161, 1998
  8. Storti G, Mazzotti M, Morbidelli M, Carra S, AIChE J., 39(3), 471, 1993
  9. Ma Z, Wang NH, AIChE J., 43(10), 2488, 1997
  10. Gentilini A, Migliorini C, Mazzotti M, Morbidelli M, J. Chromatogr. A, 805(1), 37, 1998
  11. Mazzotti M, Storti G, Morbidelli M, J. Chromatogr. A, 769(1), 3, 1997
  12. Minceva M, Pais LS, Rodrigues AE, Chem. Eng. Process., 42(2), 93, 2003
  13. Hashimoto K, Adachi S, Noujima H, Maruyama A, J. Chem. Eng. Jpn., 16(5), 400, 1983
  14. Wankat PC, Rate-Controlled Separations, Glasgow/London, 1994
  15. Gorges G, Sadroddin GS, Antia MK, Fundamentals of Preparative and Nonlinear Chromatography, Academic Press, New York, 1994