Issue
Korean Chemical Engineering Research,
Vol.43, No.3, 344-351, 2005
천연가스를 이용한 수소 제조 기술 현황
Status for the Technology of Hydrogen Production from Natural Gas
수소에너지는 기존의 석유화학공업의 원료로서 뿐만 아니라 연료전지와 연계하여 소요량이 급속히 증가할 것으로 예측된다. 장기적으로는 재생에너지를 사용한 물 전기분해, 원자력을 이용한 수소 제조가 주목받고 있지만, 안정된 기술이 확보되기까지는 화석연료를 사용한 수소 제조법이 대용량 수소 제조법 중 가장 경제적인 것으로 분석되고 있다. 현재 화석 연료 중 천연가스를 이용한 수증기 개질 수소 제조법이 상업적인 공정으로 채택되고 있으나 CO2 분리 처리 비용이 경제성 평가에 중요한 항목으로 부각되고 있다. 따라서 천연가스를 이용한 수소 제조에도 다양한 공정이 제안되고 있으므로 천연가스를 원료로 한 수소 제조 기술의 개발 현황을 살펴보았다.
Hydrogen energy will be considered one of the most important energy carries for the future not only as raw material of petroleum chemical industry but also as the fuel of the fuel cell. The hydrogen production based upon the water electrolysis system combined renewable energy or atomic power energy is being watched as long-term hydrogen sources. Hydrogen from fossil fuel, especially natural gas steam reforming, is the economical mass production method at this time. But the cost of CO2 reduction is added in the economic analysis of hydrogen production processes. Therefore many different results are suggested from these analyses about old processes, and modified schemes are studying for the efficient development. In this review, status for the technology of hydrogen production from natural gas are summarized.
[References]
  1. Bak YC, Energy R&D, 15(2), 191, 2003
  2. Son JE, Korean Chem. Eng. Res., 42(1), 1, 2004
  3. Yun YS, Energy Engg. J., 13(1), 1, 2004
  4. Armor JN, Appl. Catal. A: Gen., 176(2), 159, 1999
  5. Tindall B, King D, Hydrocarb. Process., 69, 1994
  6. Pena MA, Gomez JP, Fierro JL, Appl. Catal. A: Gen., 144(1-2), 7, 1996
  7. Steinberg M, Int. J. Hydrog. Energy, 24, 771, 1999
  8. Scholz WH, Gas Sep. Purif., 7(3), 131, 1993
  9. Heinzel A, Vogel B, Hubner P, J. Power Sources, 105(2), 202, 2002
  10. Vogel B, Schaumberg G, Schuler A, Heinzel A, "Hydrogen Generation Technology for PEM Fuel Cells", Abstracts of the 1998 Fuel Cell Semina, Palm Springs, 364-367, 1998
  11. Hufton JR, Mayorga S, Sircar S, AIChE J., 45(2), 248, 1999
  12. Waldron WE, Hufton JR, Sircar S, AIChE J., 47(6), 1477, 2001
  13. Anand M, Hufton JR, Mayorga S, Nataraj S, Sircar S, Gaffney TR, Proc. U. S. DOE Hydrogen Program. Rev., 1, 537, 1996
  14. Hufton JR, Mayorga S, Gaffney TR, Nataraj S, Rao MB, Sircar S, Proc. U. S. DOE Hydrogen Program. Rev., 2, 693, 1998
  15. Bak IH, Choi WK, Nam SC, Jon SK, Park JH, Lee KH, Rhee WH, Joo TS, Lee TS, Cha WS, Lee DK, Development of CO2 Capture Process with Chemical Dry Sorbent for Pre-combustion Decarbonization. MOST Report MI-0028-00-0005-01A27-00-014-00, KIER-A26611, 96-230, 2003
  16. Bak YC, Cho KJ, Kim SB, J. of KSEE, 25(5), 595, 2003
  17. Trimm DL, Catal. Today, 49(1-3), 3, 1999
  18. Lee JK, Park D, Korean J. Chem. Eng., 15(6), 658, 1998
  19. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, HWAHAK KONGHAK, 35(6), 890, 1997
  20. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, HWAHAK KONGHAK, 35(6), 883, 1997
  21. Chang JS, Park SE, Roh HS, Park YK, Bull. Korean Chem. Soc., 19(8), 809, 1998
  22. Osaki T, Masuda H, Mori T, Catal. Lett., 29(1-2), 33, 1994
  23. Parmon VN, Catal. Today, 35(1-2), 153, 1997
  24. Wang HY, Ruckenstein E, J. Catal., 199(2), 309, 2001
  25. Hofstad KH, Hoebink JHBJ, Holmen A, Marin GB, Catal. Today, 40(2-3), 157, 1998
  26. Matsui N, Nakagawa K, Ikenaga N, Suzuki T, J. Catal., 194(1), 115, 2000
  27. Kim SB, Shin KS, Park ES, Kwak YC, Cheon HJ, Hahm HS, HWAHAK KONGHAK, 41(1), 20, 2003
  28. Jacobs L, Lednor P, Limahelu A, Schoonebeek R, Vonkeman K, "Process for the Catalytic Partical Oxidation of Hydrocarbons", U.S. patent 5510056, 1996
  29. Lago R, Bini G, Pena MA, Fierro JL, J. Catal., 167(1), 198, 1997
  30. Liu ZW, Jun KW, Roh HS, Park SE, Oh YS, Korean J. Chem. Eng., 19(5), 735, 2002
  31. Jun JH, Lee SJ, Lee SH, Lee TJ, Kong SJ, Lim TH, Nam SW, Hong SA, Yoon KJ, Korean J. Chem. Eng., 20(5), 829, 2003
  32. Jun JH, Jeong KS, Lee TJ, Kong SJ, Lim TH, Nam SW, Hong SA, Yoon KJ, Korean J. Chem. Eng., 21(1), 140, 2004
  33. Liu ZW, Roh HS, Jun KW, Park SE, Song TY, Korean J. Chem. Eng., 19(5), 742, 2002
  34. Ji YY, Li WZ, Xu HY, Chen YX, Appl. Catal. A: Gen., 213(1), 25, 2001
  35. Mo L, Zheng X, Chen Y, Fei J, React. Kinet. Catal. Lett., 78(2), 233, 2003
  36. Jing Q, Lou H, Fei J, Hou Z, Zheng X, Int. J. Hydrog. Energy, 29, 1245, 2004
  37. Audus H, Kaarstad O, Kowal M, Proceeding of 11th World Hydrogen Energy Conference, Stuttgart, 525-534, 1996
  38. Donnet JB, Carbon Black, Marcel Dekker, New York, 16, 1976
  39. Popov RG, Shprilrain EE, Zaytchenko VM, Int. J. Hydrog. Energy, 24(4), 327, 1999
  40. Park JK, Lee YW, Lee BG, Lim JS, Choi DK, Kim DC, Theor. Appl. Chem. Eng., 8(1), 1509, 2002
  41. Pohleny JB, Scott NH, "Method of Hydrogen Production by Catalytic Decomposition of a Gaseous Hydrogen Stream", U. S. Patent 3,284,161, 1996
  42. Pourier MG, Sapundzhiev C, Int. J. Hydrog. Energy, 22(4), 429, 1997
  43. Muradov N, Int. J. Hydrog. Energy, 18(3), 211, 1993
  44. Muradov NZ, Energy Fuels, 12(1), 41, 1998
  45. Kim MH, Lee EK, Jun JH, Han GY, Kong SJ, Lee BK, Lee TJ, Yoon KJ, Korean J. Chem. Eng., 20(5), 835, 2003
  46. Lynum S, "CO2-free Hydrogen from Hydrocarbons. The Kverner CB&H Process", 5th Annual US Hydrogen Meeting, National Hydrogen Association, 1994
  47. Gaudermack B, Lynum S, Int. J. Hydrog. Energy, 23(12), 1087, 1988
  48. Steomberg M, "The Carnol Process for CO2 Mitigation from Power Plants and the Transportation Sector", BNL 62835, Brookhaven National Laboratory, Upton, NY, December, 1995