Issue
Korean Chemical Engineering Research,
Vol.43, No.2, 299-304, 2005
글루코스를 함유한 음이온 하이드로젤의 pH 감응성 동적 팽윤거동
pH-Sensitive Dynamic Swelling Behavior of Glucose-containing Anionic Hydrogels
음이온 하이드로젤은 그들이 가지고 있는 pH 감응성 팽윤거동 때문에 단백질 약물의 경구투여용 전달물질로써 많은 주목을 받고 있다. 본 연구에서는 음이온 하이드로젤의 pH 변화에 따른 용매의 침투 메커니즘을 규명하기 위하여 methacrylic acid와 2-methacryloxyehtyl glucoside를 공중합하여 P(MAA-co-MEG) 하이드로젤을 합성한 후 pH 변화에 따른 하이드로젤의 동적 팽윤거동을 관찰하였다. 용매의 침투 메커니즘이 Fickian 또는 non-Fickian 인지를 설명할 수 있는 특성지수 n을 Mt/M∞=ktn 관계식으로부터 계산하였다. 하이드로젤에 대한 용매의 침투 메커니즘은 주위 pH의 영향을 많이 받았으며, 젤의 pKa 보다 높은 pH인 7.0에서는 침투 메커니즘이 상대적으로 고분자사슬의 이완에 의한 지배를 많이 받는다는 것을 알 수 있었다. 한편, pH 7.0에서 고분자 이완에 의한 용매의 침투 메커니즘은 하이드로젤에 존재하는 카르복실산의 이온화에 기인한 것임을 ATR-FTIR 분광분석을 이용하여 확인하였다.
There have been many efforts to use anionic hydrogels as oral protein delivery carriers due to their pHresponsive swelling behavior. The dynamic swelling behavior of poly(methacrylic acid-co-methacryloxyethyl glucoside) [P(MAA-co-MEG)] hydrogels was investigated to determine the mechanism of water transport through these anionic hydrogels. The exponential relation Mt/M∞=ktn was used to calculate the exponent, n, describing the Fickian or non-Fickian behavior of swelling polymer networks. The mechanism of water transport through these gels was significantly affected by the pH of the swelling medium. The mechanism of water transport became more relaxation-controlled in the swelling medium of pH 7.0 that was higher than the pKa of the gels. Experimental results of timedependent swelling behavior of the gels were analyzed with several mathematical models. Using ATR-FTIR spectroscopy, the effect of ionization of the carboxylic acid groups in the polymer networks on the water transport mechanism was investigated.
[References]
  1. Korsmeyer RW, Lustig SR, Peppas NA, J. Polym. Sci. B: Polym. Phys., 24, 395, 1986
  2. Peppas NA, Franson NM, J. Polym. Sci. B: Polym. Phys., 21, 983, 1983
  3. Brazel CS, Peppas NA, Polymer, 40(12), 3383, 1999
  4. Lowman AM, Peppas NA, in Mathiowitz, E.(Ed.), Encyclopedia of Controlled Drug Delivery, Vol. 1, Wiley, New York, 397-418, 1999
  5. Siepmann J, Kranz H, Peppas NA, Bodmeier R, Int. J. Pharm., 201(2), 151, 2000
  6. Brazel CS, Peppas NA, Biomaterials, 20(8), 721, 1999
  7. Torres-Lugo M, Peppas NA, Biomaterials, 21(12), 1191, 2000
  8. Peppas NA, Colombo P, J. Control. Release, 45(1), 35, 1997
  9. Narasimhan B, Peppas NA, in Park, K. (Ed.), Controlled Drug Delivery: Challenges and Strategies, American Chemical Society, Washington DC, 529-557, 1997
  10. Brazel CS, Peppas NA, Eur. J. Pharm. Biopharm., 49(1), 47, 2000
  11. Enscore DJ, Hopfenberg HB, Stannett VT, Polymer, 18(8), 793, 1977
  12. Hariharan D, Peppas NA, J. Polym. Sci. B: Polym. Phys., 32(6), 1093, 1994
  13. Morishita M, Lowman AM, Takayama K, Nagai T, Peppas NA, J. Control. Release, 81(1-2), 25, 2002
  14. Peppas NA, Keys KB, Torres-Lugo M, Lowman AM, J. Control. Release, 62(1-2), 81, 1999
  15. Torres-Lugo M, Peppas NA, Macromolecules, 32(20), 6646, 1999
  16. Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA, J. Pharm. Sci., 88(9), 933, 1999
  17. Lowman AM, Peppas NA, J. Biomater. Sci.-Polym. Ed., 10(9), 999, 1999
  18. Peppas NA, Kim BS, Donini C, Sipahigil O, Leobandung W, Barratt G, Duchene D, Fattal F, Legendre JY, (Eds.), New Trends in Polymers for Oral and Parenteral Administration: From Design to Receptors, Editions de Sante, Paris, 32-41, 2001
  19. Brannon-Peppas L, Peppas NA, Biomaterials, 11(9), 635, 1990
  20. Brannon-Peppas L, Peppas NA, J. Control. Release, 8(3), 267, 1989
  21. Castillo EJ, Koenig JL, Anderson JM, Kliment CK, Lo J, Biomaterials, 5(4), 186, 1984
  22. Kim B, Peppas NA, J. Biomater. Sci.-Polym. Ed., 13(11), 1271, 2002
  23. Ritger PL, Peppas NA, J. Control. Release, 5(1), 37, 1987
  24. Berens AR, Hopfenberg HB, Polymer, 19(5), 489, 1978