Issue
Korean Chemical Engineering Research,
Vol.43, No.2, 286-293, 2005
연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사
Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas
기체 수송층 흡수탑과 기포 유동층 재생탑으로 구성된 CO2 회수 공정에 대한 해석의 첫 단계로 이 공정에서 고체 순환특성을 해석하였다. 흡수제 고체 입자에 대한 입도별 물질수지를 해석하여 공정의 흐름에서 고체 흐름량과 입도 분포를 결정하였다. 실험실 규모 공정(흡수탑: 직경 25 mm, 높이 6 m; 재생탑: 직경 0.1 m, 높이 1.2 m)에서 고체순환특성을 모사하였다. 흡수탑의 입도분포는 재생탑의 입도분포와 거의 같았다. 흡수탑에서 유속과 정체층 높이가 증가 함에 따라서 고체순환량과 새 흡수제 주입량은 증가하였다. 반면에 흡수탑 내 입자의 평균입경은 감소하였다. 흡수탑 사이클론의 절단입도가 증가함에 따라서 고체순환속도는 감소하였으며, 새 흡수제 주입속도와 흡수탑 내 입자의 평균 입경은 증가하였다. 흡수제 입자의 마모계수가 증가함에 따라서 고체순환속도는 증가하고, 새 흡수제 주입속도는 증가 하며, 흡수탑 내 입자의 평균입경은 감소하였다.
An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for CO2 removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.
[References]
  1. Yi CK, Jo SH, Lee BH, Lee SY, Son JE, Jin GT, Korean J. Chem. Eng., 18(6), 1005, 2001
  2. Yi CK, Cho SH, Kwon HS, Kim KB, Chae HK, Jin GT, Son JE, HWAHAK KONGHAK, 40(2), 246, 2002
  3. Yi CK, Jo SH, Jin GT, Ahn YS, Han MH, Son JE, Ryu CK, "Continuous Operation of Spray-Dried Zinc Based Sorbent in a Hot Gas Desulfurization Process Consisting of a Transport Desulfurizer and a Fluidized Regenerator", Proceedings of 5th International Symposium on Gas Cleaning at High Temperature, CD-Rom, 2002
  4. Yi CK, Ryu CK, Jo SH, Jin GT, Han MH, Son JE, "Comparison of Continuous Operations of Two Different Hot Gas Desulfurization Processes: Transport Reactor and Bubbling Bed", Proceedings of 19th Annual International Pittsburgh Coal Conference, CD-Rom 32-4, 2002
  5. Luyben WL, Yi CK, "Design and Control of Hot-Gas Desulfurization Sytems with High Oxygen Regenerator Feed Gas", Proceedings of 5th International Symposium on Gas Cleaning at High Temperature, CD-Rom, 2002
  6. Yi CK, Luyben WL, Ind. Eng. Chem. Res., 38(11), 4290, 1999
  7. Luyben WL, Yi CK, Ind. Eng. Chem. Res., 40(4), 1157, 2001
  8. Choi JH, Yi CK, Son JE, Kim SD, HWAHAK KONGHAK, 38(5), 698, 2000
  9. Choi JH, Moon YS, Ryu HJ, Yi CK, Son JE, Kim SD, Ind. Eng. Chem. Res., 43(18), 5770, 2004
  10. Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Betterworth-Heinemann, Boston, U.S.A, 1991
  11. Merrick D, Highley J, AIChE Symp. Ser., 70(137), 366, 1974
  12. Werther J, Reppenhagen J, AIChE J., 45(9), 2001, 1999
  13. Wen CY, Yu YH, AIChE J., 12(3), 610, 1966
  14. Choi JH, Chang IY, Shun DW, Yi CK, Son JE, Kim SD, Ind. Eng. Chem. Res., 38(6), 2491, 1999
  15. Choi JH, Ma SC, Shun DW, Son JE, Kim SD, HWAHAK KONGHAK, 35(2), 300, 1997
  16. Lapple CE, Chem. Eng., 58(5), 144, 1951
  17. Patience GS, Chaouki J, Berruti F, Wong R, Powder Technol., 72(1), 31, 1992
  18. Namkung W, Cho YJ, Kim SD, HWAHAK KONGHAK, 32(2), 241, 1994