Issue
Korean Chemical Engineering Research,
Vol.43, No.2, 278-285, 2005
천연망간광석을 이용한 연속식 유동층 반응기에서 탈황모사에 관한 연구
A Study on Simulation of Desulfurization in a Continuous Fluidized Bed Using Natural Manganese Ore
연속식 유동층 반응기에서 흡착제인 천연망간광석을 이용한 탈황반응과, grain model과 two-phase 이론에 근거한 탈황 모사를 연구하였다. 입자 내의 기공 구조변화를 고려한 grain model을 통하여 탈황 반응시간, 천연망간광석의 입자 크기, 기공 내에서 SO2의 확산속도에 대한 영향을 고찰한 결과, 입자의 기공 내에서 SO2 가스 확산이 탈황 반응의 가장 중요한 요소로 나타났다. 또한, 연속식 유동층 반응기에서 흡착제인 천연망간광석을 이용한 탈황반응 실험결과는 grain model과 two-phase 이론과 잘 일치하였으며, 탈황 결과를 잘 예측할 수 있었다.
In the present work, a reaction of sulfur removal and simulation of desulfurization based on the grain model and two-phase theory were studied using natural manganese ore (NMO) as a sorbent in a continuous fluidized bed reactor. The effect of desulfurization was investigated through the grain model considered the change of pore structure as a function of desulfurization time, particle size of NMO, and diffusion velocity of SO2 in the pores. Among these parameters, the diffusion of SO2 in the pores of NMO was the most important factor. Moreover, the reaction of sulfur removal and desulfurization in a continuous fluidized bed reactor using NMO as a sorbent could be well predict through the grain model and two-phase theory, respectively.
[References]
  1. National Institute of Environmental Research, "Environmental White Paper,", 1996
  2. Ertl G, Knozinger H, Weitcamp J, "Handbook of Heterogeneous Catalysis," 4, VCH Ltd., Germany, 1997
  3. Ministry of Environment, "Air Quality Preservation Act,", 2001
  4. Hartman M, Coughlin RW, AIChE J., 22(1), 3, 1976
  5. Yates JG, Best RJ, Ind. Eng. Chem. Process Des. Dev., 15(2), 239, 1976
  6. Yeh JT, Drummond CJ, Joubert JI, Environ. Prog., 6(1), 44, 1987
  7. Uysal BE, Aksahin I, Yucel H, Ind. Eng. Chem. Res., 27(2), 434, 1988
  8. Faltsi-Saravelou O, Vasalos IA, Ind. Eng. Chem. Res., 29(2), 251, 1990
  9. Partrige BA, Rowe PN, Trans. Inst. Chem. Eng., 44(2), 335, 1966
  10. Fryer C, Potter OE, Ind. Eng. Chem. Fundam., 11(3), 338, 1972
  11. Hartman M, Coughlin RW, Ind. Eng. Chem. Process Des. Dev., 13(1), 3, 1974
  12. Weast RC, "Handbook of Chemistry and Physics", 47ed.,, 1968
  13. Mason EA, J. Chem. Phys., 46(10), 3199, 1967
  14. Bird RB, Stewart WE, Lightfoot EN, "Transport Phenomena," John Wiley & Son, Inc, 1960
  15. Doraiswamy LK, Sharma MM, "Heterogeneous Reactions," Wiley and Sons: New York, 1, 1984
  16. Kunii D, Levenspiel O, "Fluidization Engineering", Krieger, Huntington, N.Y, 1977
  17. Kunii D, Levenspiel O, Ind. Eng. Chem. Fundam., 7(3), 446, 1968
  18. Viswanathan K, Ind. Eng. Chem. Fundam., 21(4), 352, 1982
  19. Kato K, Wen CY, Chem. Eng. Sci., 24(5), 1351, 1969
  20. Mori S, Wen CY, AIChE J., 21(1), 109, 1975
  21. Geldart D, Powder Technol., 4(1), 41, 1971