Issue
Korean Chemical Engineering Research,
Vol.43, No.1, 9-15, 2005
촉매성 산화물 전극에 의한 암모니아의 전기 화학적 분해 특성
Electrochemical Decomposition Characteristics of Ammonia by the Catalytic Oxide Electrodes
본 연구에서는 전기화학적 방법에 의한 암모니아의 질소화 분해 특성을 파악하기 위하여 여러 암모니아 전해 실험 변수에 대하여 조사하였다. IrO2, RuO2, Pt 양극에서 암모니아의 분해에 대한 pH 및 염소 이온의 영향이 상호 비교되었으며, 전해 반응기에서의 분리막의 존재 유무, 전류밀도, 암모니아 초기 농도 등의 변화에 따른 암모니아의 전기화학적 분해 특성이 조사되었다. 산성이나 알칼리 조건에서 암모니아의 분해에 대한 전극의 성능은 전체적으로 RuO2=IrO2>Pt 순으로 나타났다. 암모니아의 분해는 전극에 공급되는 전류 밀도가 80 mA/cm2에서 가장 높았으며 그 이상의 전류 밀도에서는 산소발생에 의해 암모니아의 전극 흡착이 영향을 받아 오히려 감소되었다. 암모니아 용액에 존재하는 염소 이온의 농도가 증가할수록 암모니아의 분해는 증가하나 10 g/l 이상에서는 분해율 증가가 크게 둔화되었다. pH 7의 전해 반응의 경우 전극 표면에서 OH 라디칼이 생성되어 암모늄 이온의 분해가 이루어지는데, 이 OH 라디칼은 RuO2 전극에서 가장 많이 생성이 되었다.
In order to know the electrochemical decomposition characteristics of ammonia to nitrogen, this work has studied several experimental variables on the electrolytic ammonia decomposition. The effects of pH and chloride ion at IrO2, RuO2, and Pt anodes on the electrolytic decomposition of ammonia were compared, and the existence of membrane equipped in the cell and the changes of the current density, the initial ammonia concentration and so on were investigated on the decomposition. The performances of the electrode were totally in order of RuO2.IrO2>Pt in the both of acid and alkali conditions, and the ammonia decomposition was the highest at a current density of 80 mA/cm2, over which it decreased, because the adsorption of ammonia on the electrode surface was hindered due to the evolution of oxygen. The ammonia decomposition increased with the concentration of chloride ion in the solution. However, the increase became much dull over 10 g/l of chloride ion. The RuO2 electrode among the tested electrodes generated the most OH radicals which could oxidized the ammonium ion at pH 7.
[References]
  1. Feng C, Sugiura N, Shimada S, Maekawa T, J. Hazard. Mater., B103, 65, 1992
  2. Bae SK, Park SC, J. Kor. Soc. Env. Engs, 6(1), 44, 1984
  3. Lin SH, Wu CL, Water Res., 30(3), 715, 1996
  4. Bouwer EJ, Crowe PB, J. AWWA, 80(9), 82, 1988
  5. Grimm J, Bessarabov D, Sanderson R, Desalination, 115(3), 285, 1998
  6. Trasatti S, Electrochim. Acta, 36(2), 225, 1991
  7. Trasatti S, "Electrode of Conductive Metallic Oxides", Part A, Elsevier Sci. Pub. Co., Amsterdam, 1980
  8. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, Electrochim. Acta, 46(6), 915, 2001
  9. Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Electrochim. Acta, 47(15), 2525, 2002
  10. Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, J. Electrochem. Soc., 149(12), D187, 2002
  11. Kim KW, Kim YJ, Kim IT, Park GI, Lee EH, Korean Chem. Eng. Res., 42(5), 524, 2004
  12. Echigo S, Yamada H, Matsui S, Kawanishi S, Shishida K, Water Sci. Technol., 34, 81, 1996
  13. Floyd RA, Soong LM, Biochem. Biophys. Res. Commun., 74(1), 79, 1977
  14. Vooys ACA, Santen RA, Veen JAR, J. Mol. Catal. A-Chem., 154, 203, 2000
  15. Pintar A, Batista J, Levec J, Kajiuchi T, Appl. Catal. B: Environ., 11(1), 81, 1996
  16. Bryabt EA, Fulton GP, Budd GC, "Disinfection Alternatives for Safe Drinking Water", Van Nostrand Reinhold, N. Y., 1992
  17. Sasaki K, Hisatomi Y, J. Eectrochem. Soc., 117(6), 758, 1970
  18. Boodts JFC, Trasatti S, J. Eectrochem. Soc., 137(12), 3784, 1990
  19. Trasatti S, Electrochim. Acta, 29, 1503, 1984
  20. Comninellis C, Electrochim. Acta, 39(11-12), 1857, 1994
  21. Kim KW, Kim EH, Kim YJ, Lee MH, Kim KH, Shin DW, J. Photochem. Photobiol. A-Chem., 159, 301, 2003