Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 630-634, 2004
촉매의 종류에 따른 직접 개미산 연료전지의 성능
The Performance of Direct Formic Acid Fuel Cells with Various Catalysts
본 실험에서는 고분자 전해질 연료전지(PEMFC)의 연료로 새롭게 제안된 개미산을 이용한 연료전지 시스템에서, 촉매의 종류 및 부하량 변화에 따른 전지의 성능을 조사하였다. 아울러 직접 개미산 연료전지(DFAFC)에 적합한 조건을 찾기 위한 연구도 수행하였다. 개미산의 공급 속도가 전지의 성능에 미치는 영향은 매우 작았다. 9M의 개미산을 공급하였을 때 가장 좋은 성능을 보였으며, Pt-Ru black 촉매의 부하량을 4 mg·Pt/cm2에서 8 mg·Pt/cm2로 증가시켰을 경우 약 10mW/cm2의 전력밀도 증가를 보였다. Pt-Ru black 촉매를 8 mg·Pt/cm2 담지하여 제작한 단위전지에 9M의 개미산을 공급하였을 경우 36.6 W/cm2의 전력밀도를 얻을 수 있었다. 마지막으로 Pt-Pd 촉매를 사용하였을 때 0.820 V로 가장 높은 OCP(open circuit potential)를 보였으며, 이러한 결과는 Pt-Pd 촉매가 개미산의 산화반응에 가장 우수한 촉매임을 보여주며, 개미산 연료전지 시스템에 적합한 촉매로의 발전 가능성을 보여준다.
Fuel cell performance using formic acid as a fuel has been examined with various anode catalysts. Also the optimum conditions were investigated for the high performance of the direct formic acid fuel cell(DFAFC). The change in the flow rate of formic acid had only a slight effect on the performance of fuel cell. The best performance was shown at 9 M formic acid. Power density increased about 10 mW/cm2 with an increase in the loading of Pt-Ru black catalyst from 4 mg·Pt/cm2 to 8 mg·Pt/cm2. The highest power density was 36.6 mW/cm2 with a Pt-Ru black catalyst of 8 mg·Pt/cm2 and 9 M formic acid feed. Finally the open circuit potential(OCP) was the highest for Pt-Pd catalyst at about 0.820 V, including that Pt-Pd was the most suitable catalyst for oxidation of formic acid.
[References]
  1. Jun YW, NICE, 21(5), 544, 2003
  2. Kordesch K, Simader G, Fuel Cells and their Appilication, VCH Publishers, New York, 1996
  3. Appleby AJ, Foulkes FR, Fuel Cell Handbook, Van Nostrand Reinhold, New York, 1993
  4. Blomen LJM, Mugerwa MN, Fuel Cell Systems, Plenum Press, New York, 1993
  5. Vielstich W, Gasteiger HA, Lamm A, Handbook of Fuel Cells, 1., John Wiley & Sons, England, 2003
  6. Vielstich W, Gasteiger HA, Lamm A, Handbook of Fuel Cells, 3., John Wiley & Sons, England, 2003
  7. Hoogers, G., Fuel Cell Technology Handbook, CRC, 2003
  8. Son JE, Korean Chem. Eng. Res., 42(1), 1, 2004
  9. Cropper MJ, Geiger S, Jollie D, J. Power Sources, 131(1-2), 57, 2004
  10. Waidhas M, Drenckhahn M, Preidel W, Landes H, J. Power Sources, 61(1-2), 91, 1996
  11. Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH, Electrochim. Acta, 43(24), 3693, 1998
  12. Park GG, Sohn YJ, Yang TH, Yoon YG, Lee WY Kim CS, J. Power Sources, 131(1-2), 182, 2004
  13. Qi ZG, Kaufman A, J. Power Sources, 110(1), 177, 2002
  14. Sasikumar G, Ihm JW, Ryu H, J. Power Sources, 132(1-2), 11, 2004
  15. Scott K, Taama W, Cruickshank J, J. Appl. Electrochem., 28(3), 289, 1998
  16. Cruickshank J, Scott K, J. Power Sources, 70(1), 40, 1998
  17. Nakagawa N, Xiu Y, J. Power Sources, 118(1-2), 248, 2003
  18. Heinzel A, Barragan VM, J. Power Sources, 84(1), 70, 1999
  19. Wang X, Hu JM, Hsing IM, J. Electroanal. Chem., 562(1), 73, 2004
  20. Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T, J. Power Sources, 111(1), 83, 2002
  21. Rhee YW, Ha SY, Masel RI, J. Power Sources, 117(1-2), 35, 2003
  22. Ha S, Rice CA, Masel RI, Wieckowski A, J. Power Sources, 112(2), 655, 2002
  23. Rice C, Ha S, Masel RI, Wieckowski A, J. Power Sources, 115(2), 229, 2003
  24. Ha S, Adams B, Masel RI, J. Power Sources, 128(2), 119, 2004
  25. Zhu YM, Ha SY, Masel RI, J. Power Sources, 130(1-2), 8, 2004
  26. Markovic NM, Gasteiger HA, Ross PN, Jiang XD, Villegas I, Weaver MJ, Electrochim. Acta, 40(1), 91, 1995
  27. Waszczuk P, Barnard TM, Rice C, Masel RI, Wieckowski A, Electrochem. Commun, 4(7), 599, 2002
  28. Chen S, Lee D, Schell M, Electrochem. Commun, 3(2), 81, 2001
  29. Jiang J, Kucernak A, J. Electroanal. Chem., 520(1-2), 64, 2002
  30. Zhou W, Li W, Song S, Zhou Z, Jiang L, Sun G, Kin Q, Pouliantis K, Kontou S, Tsiakaras P, J. Power Sources, 131(1-2), 217, 2004