Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 624-629, 2004
탄소 나노튜브를 함유한 나노유체의 열전도도 증가
Enhancing Thermal Conductivity of Nanofluids Containing Carbon Nanotubes
에틸렌글리콜에 탄소 나노튜브를 부유시켜 높은 열전도도를 가진 열전달유체로 사용할 수 있는 나노유체를 직접 및 산처리 분산방법을 이용하여 제조하였다. 직접 분산방법은 에틸렌글리콜에 탄소 나노튜브를 넣은 후 초음파로 처리하여 탄소나노튜브를 분산시키는 방법(S-CNT), 또는 에틸렌글리콜에 분산 안정제인 PAA-co-AA(polyacrylamide-co-acrylicacid)를 용해시킨 후 탄소 나노튜브를 넣고 초음파로 처리하여 탄소 나노튜브를 분산시키는 방법(D-CNT)으로 하였다. 산처리 분산방법은 에틸렌글리콜에 산을 이용하여 표면 처리한 탄소 나노튜브를 넣은 후 초음파로 처리하여 탄소 나노튜브를 분산하였다(A-CNT). 나노유체의 열전도도는 hot wire method에 의해 측정하였다. 1 vol% S-CNT, D-CNT 및 A-CNT의 열전도도는 순수 에틸렌글리콜의 열전도도와 비교할 때 16, 14, 15% 향상하였다. S-CNT을 이용하여 만든 나노유체에 나노튜브 농도가 1, 2, 3 vol%증가함에 따라 순수한 에틸렌글리콜에 비해 열전도도는 16, 19, 23% 증가하였다.
Nanofluids, the suspension of carbon nanotubes (CNTs) in ethylene glycol which can be used as heat transfer fluid having high thermal conductivity, were prepared by dispersion of CNTs in ethylene glycol using direct and acid treatment dispersion methods. Direct dispersion method was achieved by sonication of ethylene glycol having CNTs (SCNT) or by sonication after dissolution of PAA-co-AA (polyacrylamide-co-acrylicacid) stabilizer into above ethylene glycol (D-CNT). Acid treatment dispersion method was done by sonication of ethylene glycol involving CNTs treated the surface with acids (A-CNT). The thermal conductivities of nanofluids were measured by hot wire method. The thermal conductivities of S-CNT, D-CNT, and A-CNT containing 1 vol% of CNTs increased up to 16, 14, and 15%, compared to that of pure ethylene glycol. The thermal conductivities of nanofluids prepared by S-CNT increased up to 16, 19, and 23% with increasing CNTs concentrations of 1, 2, and 3 vol%, respectively.
[References]
  1. Harris PJF, Carbon Nanotubes and Related Structures, Cambridge University Press, New York, 1999
  2. Choi SS, FED, 23(1), 99, 1995
  3. Xuan Y, Li Q, Int. J. Heat Fluid Flow, 21, 58, 2000
  4. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ, Appl. Phys. Lett., 78(2), 718, 2001
  5. Lee S, Choi SUS, Li S, Eastman JA, J. Heat Transf. -Trans. ASME, 121, 280, 1999
  6. Das SK, Putra N, Roetzel W, Int. J. Heat Mass Transf., 46(5), 851, 2003
  7. Xie H, Lee H, Youn W, Choi M, J. Appl. Phys., 94, 4967, 2003
  8. Saito T, Matsushige K, Tanaka K, Physica B, 323, 208, 2002
  9. Shaffer MSP, Fan X, Windle AH, Carbon, 36, 1603, 1998
  10. Jiang LQ, Gao L, Sun J, J. Colloid Interface Sci., 260(1), 89, 2003
  11. Kinloch IA, Roberts SA, Windle AH, Polymer, 43(26), 7483, 2002
  12. Bentley JP, J. Phy. E., 17, 430, 1984
  13. http://www.foresight.org/Conferences/MNT7/Papers/Che/index.html