Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 612-618, 2004
수처리용 Al(III)계 무기고분자응집제 제조시 물리적 영향
Physical Effect on Synthesis of Al(III) Polymeric Inorganic Coagulants for Water Treatment
Al(III)계 무기고분자 응집제의 특성을 연구한 결과, 다음과 같은 몇 가지의 결론을 도출할 수 있었다. 염기도에 따라 제조된 PACl 집제의 특성을 연구한 결과, 다음과 같은 몇 가지의 결론을 도출할 수 있었다. 염기도에 따라 제조된 PACl 응집제의 ferron 분석결과 r(OHadded/Al)=2.2에서 85% 이상의 가장 많은 polymeric Al(III)종을 함유하고 있는 것으로 나타났다. r=2.2의 PACl에 대한 혼합 및 온도에 따른 제조에 있어서 혼합에 따른 속도경사 값이 114 sec-1과 제조 온도 50 ℃의 경우에서 polymeric Al(III)종이 85% 이상으로 가장 많이 함유되어 있는 것으로 나타났다. 그리고 도출된 최적의 제조조건에 따른 PACl 특성 실험에서 ferron 방법 및 27Al-NMR 분석결과 polymeric Al(III)종의 함유정도는 서로 비슷한 결과를 보였으며, FT-IR의 분석결과 연속적인 Al-OH의 결합이 이루어지는 것으로 나타났다. 그리고 제조된 Al(III)계 무기고분자의 사용에 있어서 보관기간에 따른 Al(III)종 변화를 관찰한 결과, 보관기간 동안의 Al(III)종 변화에 따른 영향은 없는 것으로 나타났다.
This research explored the feasibility of preparing preformed PACl (polyaluminum chloride) as coagulants for water treatment at optimum synthesized condition. The optimum synthesized condition of PACls was that the Gvalue and temperature were 114 sec -1 and 50 ℃, respectively. The differentiation and quantification of hydrolytic Alspecies in coagulant were done by spectrophotometric method based on the interaction of Al with Ferron as a complexing agent. In addition, 207Al-NMR and FT-IR were used to characterize the nature and structure of the hydrolytic species in the synthesized coagulants. The properties of the synthesized polyaluminum chloride (PACl) showed that the quantities of polymeric Al produced at a value of r (=OHadded/AlT) at 2.2 exhibited a maxima at 85% of the total aluminum in solution. The synthesized PACl was stable during storing period indicating the aging effect is negligible.
[References]
  1. Kang LS, Han SW, Jung CW, Korean J. Chem. Eng., 18(6), 965, 2001
  2. Han SW, "Production and Application of Polymeric Inorganic Coagulants for Water Treatment", Ph. D. Dissertation, Pukyong National University, Busan, Korea, 2000
  3. Parthasarathy N, Buffle J, Water Res., 19, 25, 1985
  4. Letterman RD, Asolekar S, Water Res., 24(8), 931, 1990
  5. Clark MM, David R, Wiesner MR, "Effect of Micromixing on Product Selectivity in Rapid Mix", Proc. AWWA Annual Conf., Kanasas City, Mo, June, 1987
  6. Driscoll CT, Letterman RD, Jour. Envir. Engrg. Div. ASCE, 114(2), 21, 1988
  7. Dempsey BA, Chemistry of Coagulants. In Am. Water Works Assoc. Seminar Proceedings : Influence of Coagulation on the Selection, Operation, and Performance of Water Treatment Facilities", Am. Water Works Assoc., Denver, June, 19, 1987
  8. Hem JD, Roberson CE, "Aluminum Hydrolysis Reaction and Products in Mildly Acidic Aqueous Systems, in Chemical Modeling of Aqueous Systems II", Melchior, D.C. and Bassett, R.L., Eds. American Chemistry Society Symposium Series, 416, 1990
  9. Vermeulen AC, de Bruyn PL, J. Colloid Interface Sci., 51, 449, 1975
  10. Smith RM, "Relation Among Equilibrium and Nonequilibrium Aqueous Species of Aluminum Hydroxy Complexes", Nonequilibrium Systems in Natural Water Chemistry (Gould, R.F. eds.), A.C.S. Advances in Chemistry Series No. 106, Washington D.C, 250, 1971
  11. Bersillon JL, Hsu PH, Fiessinger F, Soil Sci. Soc. Am. J., 51, 825, 1988
  12. David RP, Environ. Sci. Technol., 26(5), 908, 1992
  13. Bottero JY, Cases JM, Fiessinger F, Poirer JE, J. of Phys. Chem., 84, 2933, 1980
  14. Akitt JW, Farthing A, J. Magn. Reson., 32, 345, 1978
  15. Akitt JW, Greenwood NN, Khandelwal BL, J. Chem. Soc.-Dalton Trans., 1226, 1972
  16. Park KY, Lee K, Kim J, HWAHAK KONGHAK, 32(5), 742, 1994