Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 605-611, 2004
폴리부틸렌테레프탈레이트/몬모릴로나이트 나노복합체의 결정화 거동 및 동적 기계적 물성에 관한 연구
Crystallization and Dynamic Mechanical Properties of Polybutylene terephthalate(PBT)/Montmorillonite Nanocomposite
폴리부틸렌테레프탈레이트(PBT)/몬모릴로나이트(montmorillonite, MMT) 나노복합체를 이축압출기를 이용하여 용융삽입법으로 제조하였다. 제조된 PBT/MMT 나노복합체는 XRD와 TEM 분석으로부터 MMT입자가 부분적으로 박리되어 PBT 매트릭스에 균일하게 분산된 삽입형 나노복합체임을 확인하였다. PBT 및 PBT/MMT 나노복합체의 비등온 결정화 거동을 DSC를 이용하여 조사하였으며, 이를 수정된 Avrami식으로 분석한 결과 분산된 MMT입자가 기핵제 역할을 함으로써 매트릭스 수지의 비등온결정화속도를 크게 증가시킴을 알 수 있었다. 또한, 동적기계적물성을 DMA을 이용하여 분석한 결과 MMT의 첨가량이 5 wt%인 나노복합체에서의 저장탄성율은 전 온도범위에서 매트릭스 수지에 비해 40% 이상 증가하였으나, 유리전이온도의 변화는 나타나지 않았다.
Poly (butyleneterephthalate) (PBT)/montmorillonite (MMT) hybrid nanocomposite was prepared via melt intercalation using a co-rotating twin screw extruder. From the analysis using X-ray diffraction (XRD) and transmission electron microscope (TEM), it was confirmed that the PBT/MMT hybrid forms an intercalated structure in which MMT particles are partially exfoliated and are dispersed uniformly in the PBT matrix. The effect of clay layers on the non-isothermal crystallization behaviors of PBT was investigated by differential scanning calorimetry (DSC), and modified Avrami analysis was used for the interpretation of the results. It was found that the introduction of nano-size clay layers accelerates the non-isothermal crystallization process of PBT and the clay layers act as nucleating agents. Dynamic mechanical analysis for the nanocomposite showed that storage modulus of the PBT matrix was increased by more than 40% over whole temperature range on the addition of MMT by 5 wt%, but the change in glass transition temperature was marginal.
[References]
  1. LeBaron PC, Wang Z, Pinnavaia TJ, Appl. Clay Sci., 15, 11, 1999
  2. Lozano K, Barrera EV, J. Appl. Polym. Sci., 79(1), 125, 2001
  3. Putz KW, Mitchell CA, Krishnamoorti R, Green PF, J. Polym. Sci. B: Polym. Phys., 42, 2286, 2004
  4. Saujanya C, Radhakrishnan S, Polymer, 42(16), 6723, 2001
  5. Djokovic V, Nedeljkovic JM, Macromol. Rapid Commun., 21, 994, 2000
  6. Usuki A, Kojima Y, Kawasumi M, Okada Y, Ukushima T, Kurauchi T, Kamigato O, J. Mater. Res., 8, 1179, 1993
  7. Cho JW, Paul DR, Polymer, 42(3), 1083, 2001
  8. Fornes TD, Yoon PJ, Keskkula H, Paul DR, Polymer, 42(25), 9929, 2001
  9. Liu XH, Wu QJ, Macromol. Mater. Eng., 287, 180, 2002
  10. Xu W, Ge M, He P, J. Appl. Polym. Sci., 82(9), 2281, 2001
  11. Huang JC, Zhu ZK, Yin J, Qian XF, Sun YY, Polymer, 42(3), 873, 2001
  12. Lee SR, Park HM, Lim H, Kang TY, Li XC, Cho WJ, Ha CS, Polymer, 43(8), 2495, 2002
  13. Liu Z, Chen K, Yan D, Eur. Polym. J., 39, 2359, 2003
  14. Li X, Kang T, Cho WJ, Lee JK, Ha CS, Macromol. Rapid Commun., 22, 1306, 2001
  15. Chisholm BJ, Moore RB, Barber G, Khouri F, Hempstead A, Larsen M, Olson E, Kelley J, Balch G, Caraher J, Macromolecules, 35(14), 5508, 2002
  16. Werener E, Janocha S, Hopper MJ, Mackenzie KJ, Encyclopedia of Polymer Science and Engineering; Kroschwit, J. I., Ed.; Wiley0Interscience: New York, 1988
  17. Park CS, Lee KJ, Kim SW, Lee YK, Nam JD, J. Appl. Polym. Sci., 86, 478, 2002
  18. Avrami MJ, J. Chem. Phys., 7, 103, 1939
  19. Dejuana R, Jauregui A, Calahorra E, Cortazar M, Polymer, 37(15), 3339, 1996
  20. Lee SW, Ree M, Park CE, Jung YK, Park CS, Jin YS, Bae DC, Polymer, 40(25), 7137, 1999
  21. Liu X, Wu Q, Eur. Polym. J., 38, 1383, 2002
  22. Jeziorny A, Polymer, 19, 1142, 1978
  23. Xu WB, Ge ML, He PS, J. Polym. Sci. B: Polym. Phys., 40(5), 408, 2002
  24. Ma JS, Zhang SM, Qi ZN, Li G, Hu YL, J. Appl. Polym. Sci., 83(9), 1978, 2002
  25. Hambir S, Bulakh N, Kodgire P, Kalgaonkar R, Jog JP, J. Polym. Sci. B: Polym. Phys., 29, 446, 2001