Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 588-597, 2004
매체순환식 가스연소기 적용을 위한 산소공여입자의 금속산화물 선정기준
Criteria for Selection of Metal Component in Oxygen Carrier Particles for Chemical-Looping Combustor
매체순환식 가스연소기에 적용하기 위한 산소공여입자의 금속성분 선정기준을 마련하기 위해 가능한 금속성분의 녹는점, 원자량(분자량)등의 물리적 특성을 고려하여 후보물질을 선정하고, 선정된 후보 금속성분에 대해 금속산화물의 여러 가지 형태를 고려하여 반응열 및 산소전달능력을 고려하고 기존 연구들에서 XRD 분석을 통해 확인된 산화 상태와 환원상태를 비교하였다. 여러 가지 금속성분들 중에서 Ni을 금속성분으로 고려한 경우가 적절한 산화-환원 반응열을 나타내었으며 산소전달능력이 우수하였고 산화상태와 환원상태가 고정적이었다. 결과적으로 Ni이 산소공여입자에 적용하기에 가장 적합한 금속성분으로 선정되었으며 Ni계 산소공여입자에 대해 금속산화물 함량과 압력의 변화에 따른 공정성능 평가를 통해 산소공여입자 선정 및 개발을 위한 기준을 마련하였다.
To provide criteria for selection of metal component in an oxygen carrier particle for a chemical-looping combustor, applicable metal components were selected by consideration of physical properties such as melting point and atomic weight (molecular weight). For the applicable metal components, possible reduced and oxidized phases were considered. Next, we investigated heat of reaction, oxygen transfer capacity, and crystal structures identified by XRD analysis in the previous studies. We found that Ni has an appropriate heat of oxidation and reduction, excellent performance in oxygen transfer capacity, and fixed reduced and oxidized phase. Therefore, Ni was selected as the best metal component for the oxygen carrier particle. We provide guideline for selection and development of oxygen carrier particle by performance estimation of chemical-looping combustor with variations of metal oxide content and pressure.
[References]
  1. Ryu HJ, "CO2-NOx Free Chemical-looping Combustion Technology", KOSEN report, http://www.kosen21.org, 2003
  2. Ryu HJ, ETIS, 17, 93, 2002
  3. IEA Greenhouse Gas R & D Programme Report, "Greenhouse Gas Emissions from Power Stations", available on http://www.ieagreen.org.uk/srlp.htm, 2000
  4. IEA Greenhouse Gas R&D Programme Report, "Carbon Dioxide Capture from the Power Stations", available on http://www.ieagreen.org.uk/sr2p.htm, 2000
  5. Wolf J, Anheden M, Yan J, "Performance Analysis of Combined Cycles with Chemical Looping Combustion for CO2 Capture", Proceedings of 18th Pittsburg Coal Conference, December 3-7, newcastle, NSW, Australia, session 23, CD-ROM, 2001
  6. ISHIDA M, JIN HG, Energy, 19(4), 415, 1994
  7. Hatanaka T, Matsuda S, Hatano H, Proceedings of the Thirty Second IECEC, 1, 944, 1997
  8. Ryu HJ, Bae DH, Han KH, Lee SY, Jin GT, Choi JH, Korean J. Chem. Eng., 18(6), 831, 2001
  9. Ryu HJ, Lim NY, Bae DH, Jin GT, HWAHAK KONGHAK, 41(5), 624, 2003
  10. Ryu HJ, Jin GT, Lim NY, Bae SY, Trans. of the Korean Hydrogen Energy Society, 14(1), 24, 2003
  11. Kubaschewski O, Alcock CB, "Metallurgical Thermochemistry", Pergamon Press, 5th ED., Oxford, 1979
  12. Ryu HJ, Jin GT, Energy Eng., 12(4), 289, 2003
  13. Jeong JH, Park JW, Yoon WL, J. Korean Ind. Eng. Chem., 14(4), 411, 2003
  14. Jin H, Okamoto T, Ishida M, Energy Fuels, 12(6), 1272, 1998
  15. Cho P, Mattisson T, Lyngfelt A, Fuel, 83(9), 1215, 2004
  16. Ishida M, Jin HG, Okamoto T, Energy Fuels, 12(2), 223, 1998
  17. Cho P, Mattisson T, Lyngfelt A, "Reactivity of Iron Oxide with Methane in a Laboratory Fluidized Bed-Application of Chemical Looping Combustion", 7th International Conference on Fluidized Bed Combustion, Niagara Falls, Ontario, May 5-7, 599-606, 2002
  18. Brandvoll O, Bolland O, "Inherent Co2 Capture using Chemical Looping Combustion in a Natural Gas Fired Cycle", Paper presented at ASME TURBO EXPO 2002, Amsterdam, Netherlands, Accepted for Publication in Journal of Engineering for Gas Turbines and Power, 2002