Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 510-517, 2004
금속(Fe 및 K) 담지 활성탄소를 위한 열처리 반응의 속도론적 고찰
Kinetics of Heat Treatment for Metal (Fe or K) Impregnated Activated Carbons
Fe 또는 K를 담지한 활성탄소의 열처리를 수행하고 이들 활성탄소의 특성을 XRD, BET 표면적, 기공 분포, CO2와 NH3의 승온 탈착(TRD) 분석방법으로 살펴보았다. 또한, 열중량 분석(TGA)에 의한 열처리 반응의 속도론을 고찰하였으며 활성화에너지를 결정하기 위하여 Kissinger, Freeman-Carroll, Friedman 방법을 이용하였다. 열처리에 의하여 금속 활성탄소의 중기공 부피는 증가하였으나 미세공 부피와 BET 표면적은 크게 감소하였다. 이들 활성탄소는 상용 활성탄소에 비하여 상대적으로 높은 CO2와 NH3 흡착량을 나타내었다.
Heat treatment of the activated carbons impregnated with Fe or K was carried out and these metal activated carbons (MAC) characterized by XRD, BET surface area, pore size distribution and CO2 and NH3 temperature programmed desorption (TPD). Also, The kinetics of the heat treatment was investigated by thermogravimetric analysis(TGA). Kissinger, Freeman-Carroll and Friedman method have been used to determine the activation energies. The mesopore volume of MAC was increased by heat treatment, but the micro volume and BET surface area decreased remarkably. CO2 and NH3 adsorption for the MAC is found to be higher than the commercial activated carbon (CAC).
[References]
  1. Tamai H, Katsu N, Ono K, Yasuda H, Carbon, 39, 1963, 2001
  2. Moon SJ, Jeon GS, Ihm SK, HWAHAK KONGHAK, 26(6), 617, 1988
  3. Freitas MMA, Figueiredo JL, Fuel, 80, 1, 2001
  4. Kyotani T, Carbon, 38, 269, 2000
  5. Ryoo R, Jun S, J. Korean Ind. Eng. Chem., 12(1), 1, 2001
  6. Eom SY, Cho TH, Cho KH, Ryu SK, HWAHAK KONGHAK, 38(5), 591, 2000
  7. Ferraz MCMA, Monteiro JLC, Fuel, 79(6), 645, 2000
  8. Hayashi J, Horikawa T, Muroyama K, Gomes VG, Microporous Mesoporous Mater., 55, 63, 2002
  9. Okada K, Yamamoto N, Kameshima Y, Yasumori A, J. of Colloid and Interface Sci., 262, 194, 2003
  10. Teng H, Wang SC, Ind. Eng. Chem. Res., 39, 673, 2000
  11. Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K, Mukai SR, Tamon H, Carbon, 41, 157, 2003
  12. Huidobro A, Pastor AC, Rodriguez-Reinoso F, Carbon, 39, 389, 2001
  13. Tsai WT, Chang CY, Lin MC, Chien SF, Sun HF, Hsieh MF, Chemosphere, 45, 51, 2001
  14. Oh WC, J. Korean Ind. Eng. Chem., 13(5), 434, 2002
  15. Hayashi J, Uchibayashi M, Horikawa T, Muroyama K, Gomes VG, Carbon, 40, 2747, 2002
  16. Ryu DK, Kim SH, J. Korean Ind. Eng. Chem., 9(2), 286, 1998
  17. Hsu LY, Teng HS, Appl. Catal. B: Environ., 35(1), 21, 2001
  18. Davini P, Carbon, 39, 2173, 2001
  19. Yang KK, Wang XL, Wang YZ, Wu B, Jin YD, Yang B, European Polymer Journal, 39, 1567, 2003
  20. Kissinger H, Anal. Chem., 29, 1702, 1957
  21. Freeman ES, Carroll B, J. Phys. Chem., 62, 394, 1958
  22. Friedman HL, J. Polym. Sci., 6, 183, 1963
  23. Silva LMS, Orfao JJM, Figueiredo JL, Appl. Catal. A: Gen., 209(1-2), 145, 2001
  24. Morozov IV, Znamenkov KO, Korenev YM, Shlyakhtin OA, Thermochim. Acta, 403(2), 173, 2003
  25. Jackson JG, Novichikhin A, Fonseca RW, Holcombe JA, Spectroc. Acta Pt. B-Atom. Spectr., 50, 1423, 1995
  26. Lehman RL, Gentry JS, Glumac NG, Thermochim. Acta, 316(1), 1, 1998
  27. Mckee DW, Fuel, 62, 170, 1983