Issue
Korean Chemical Engineering Research,
Vol.42, No.5, 485-493, 2004
화학공학에 마이크로파 에너지의 응용
Application of Microwave Energy in Chemical Engineering
일상생활에서 음식물을 빠르고 편리하게 가열시키기 위하여 전자레인지를 반복적으로 사용한다. 최근 많은 과학자들은 이 가열방법의 잠재적인 응용 가능성을 인식하여 급속 및 선택적 가열 특성을 가진 마이크로파 기술을 다른 유용한 공정에 응용하고 있는 추세이다. 따라서 본 총설에서는 마이크로파 기술을 많은 공정에 응용하기 위하여 요구되는 기초 지식으로서 마이크로파 가열의 원리 및 특성, 마이크로파 장치의 설계, 마이크로파 물질간의 상호작용, 향후 마이크로파 응용 가능성 등에 관하여 간단히 소개하였다. 특히, 매개체 및 반응기구를 중심으로 화학반응에서의 마이크로파의 열적 및 비열적 효과를 집중적으로 설명하였다.
The fast and convenient heating of foodstuffs in microwave ovens is routinely used in the common life. Recently, many researchers have recognized other potential applications for this method of heating, then have applied the rapid and selective heating associated with microwave technology to a number of useful processes. With the tool of the basic information required to apply the microwave technology to many processes, this paper reviewed briefly the principle and characteristic of microwave heating, the design of microwave unit, the interaction of microwave-matter, and the outlook of future microwave technology. Especially, it is focussed to explain the microwave thermal and nonthermal effects in organic synthesis based on medium effects and mechanistic considerations.
[References]
  1. Laverghetta TS, Practical Microwaves, Prentice-Hall, New Jersey, 1996
  2. Collin RE, Foundations for Microwave Engineering. McGrawHill, New York, 1985
  3. Loupy A, Microwaves in Organic Synthesis, Wiley-VCH, Weinheim, 2002
  4. Sutton WH, Am. Ceram. Soc. Bull., 68, 376, 1989
  5. Chabinsky IJ, MRS Symp. Proc, 124, 17, 1988
  6. Oda SJ, MRS Symp. Proc, 347, 371, 1994
  7. Bolomey JC, Metail JP, MRS Symp. Proc., 189, 15, 1991
  8. Kingston HM, Jassie LB, Anal. Chem., 58, 2534, 1986
  9. Park SS, Meek TT, J. Mater. Sci., 26, 6309, 1991
  10. Fathi Z, Folz DC, Clark DE, Hutcheon R, Ceram. Trans, 36, 333, 1993
  11. Liao LQ, Liu LJ, Zhang C, He F, Zhuo RX, Wan K, J. Polym. Sci. A: Polym. Chem., 40(11), 1749, 2002
  12. Newalker BL, Olanrewaju J, Komarneni S, Chem. Mater., 13, 552, 2001
  13. Ding Y, Masuda N, Miura Y, J. Non-Cryst. Solids, 203, 88, 1996
  14. Komarneni S, Li DS, Newalkar B, Katsuki H, Bhalla AS, Langmuir, 18(15), 5959, 2002
  15. Jacob J, Chia LH, Boey FY, J. Mater. Sci., 30(21), 5321, 1995
  16. Karz JD, Blake RD, Ceram. Trans., 21, 95, 1991
  17. Raner KD, Strauss CR, Trainor RW, J. Org. Chem., 60, 2456, 1995
  18. Strauss CR, Trainor RW, Aust. J. Chem., 48, 1665, 1995
  19. Caddick S, Tetrahedron, 51, 10403, 1995
  20. Kingston HM, Haswell SJ, Microwave Enhanced Chemistry, Amer. Chem. Soc., Washington DC, 1997
  21. Berteaud AJ, Badot JC, J. Microwave Power, 11, 315, 1976
  22. Tinga WR, MRS Symp. Proc, 124, 33, 1994
  23. Ford JD, Pei DCT, J. Microwave Power, 2, 61, 1967
  24. Hippel AV, Dielectric Materials and Applications, Artech House, London, 1995
  25. Perreux L, Loupy A, Tetrahedron, 57, 9199, 2001
  26. Okress EC, Microwave Power Engineering, Academic Press, New York, 1968
  27. Metaxas AC, Meredith RJ, Industrial Microwave Heating, Peter Peregrinus Lts., London, 1993
  28. Jung KS, Ro JY, Lee JY, Park SS, J. Mater. Sci. Lett., 20, 2203, 2001
  29. Laverghetta TS, Microwave Materials and Fabrication Techniques, Artech House, London, 2000
  30. Copson DA, Microwave Heating, AVI Publishing Co., Connecticut, 1975
  31. Kashyap SC, Wyslouzil A, J. Microwave Power, 12, 223, 1977
  32. Chan CT, Reader HC, Understanding Microwave Heating Cavities, Artech House, London, 2000
  33. Luxtron Corporation, 2775 Northwestern Parkway, Santa Clara, CA 95051-0941, USA(www.luxtron.com)
  34. Land Infrared, 10 Friends Lane, Newtown, PA 18940-1814, USA(www.landinst.com)
  35. Raytek Corporation, 1201 Shaffer Road, PO Box 1820, Santa Cruz, CA 95061-1820, USA(www.ravtek.com)
  36. Olmstead WE, Brodwin ME, Int. J. Heat Mass Transf., 40(7), 1559, 1997
  37. Pert EP, Carmel Y, Birnboim A, Olorunyolemi T, Gershon D, Calame J, Lloyd IK, Wilson OC, J. Am. Ceram. Soc., 84, 1981, 2001
  38. Binner JGP, Fernie JA, Whitaker PA, Cross TE, J. Mater. Sci., 33(12), 3017, 1998
  39. Lewis DA, Summers JD, Ward TC, McGrath JE, J. Polym. Sci. A: Polym. Chem., 30, 1647, 1992
  40. Shibata C, Kashima T, Ohuchi K, Jpn. J. Appl. Phys., 35, 316, 1996
  41. Kabza KG, Chapados BR, Gestwicki JE, McGrath JL, J. Org. Chem., 65, 1210, 2000
  42. Langa F, Cruz P, Hoz A, Espildora E, Cossio FP, Lecea B, J. Org. Chem., 65, 2499, 2000
  43. Raner KD, Strauss CR, J. Org. Chem., 57, 6231, 1992
  44. Chandra Sheker Reddy A, Shanthan Rao P, Venkataratnam RV, Tetrahedron Lett., 37, 2845, 1996
  45. Laurent R, Laporterie A, Dubac J, Lefeuvre S, Audhuy M, J. Org. Chem., 57, 7099, 1992
  46. Tanaka K, Toda F, Chem. Rev., 100(3), 1025, 2000
  47. Carrillo JR, Diaz-Ortiz A, Cossio FP, Gomez-Escalonilla MJ, Hoz A, Moreno A, Prieto P, Tetrahedron, 50, 1569, 2000
  48. Hammond GS, J. Am. Chem. Soc., 77, 334, 1955
  49. Carrillo-Munoz JR, Bouvet D, Guibe-Jampel E, Loupy A, Petit A, J. Org. Chem., 61, 7746, 1996
  50. Hoz A, Diaz-Ortiz A, Moreno A, Langa F, Eur. J. Org. Chem., 65, 3659, 2000
  51. Varma RS, Dahiya R, Kumar S, Tetrahedron Lett., 38, 2039, 1997
  52. Park SS, Hwang EH, Kim BC, Park HC, J. Am. Ceram. Soc., 83, 1341, 2000
  53. Park SS, Jung KS, Kim BC, Lee SE, Park HC, Glass Technol., 43, 70, 2002
  54. Park HC, Kim SW, Lee SG, Kim JK, Hong SS, Lee GD, Park SS, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 363, 330, 2003
  55. Kim SW, Lee SG, Kim JK, Kwon JY, Park HC, Park SS, J. Mater. Sci., 39(4), 1445, 2004
  56. Jung KS, Kwon JH, Shon SM, Ko JP, Shin JS, Park SS, J. Mater. Sci., 39(2), 723, 2004
  57. Jung KS, Kwon JH, Son SM, Shin JS, Lee GD, Park SS, Synth. Met., 141, 259, 2004