Issue
Korean Chemical Engineering Research,
Vol.42, No.4, 477-484, 2004
수화된 백운석을 이용한 SO2의 건식 제거
Dry Removal of SO2 in Flue Gas by Hydrated Dolomite
국내산 백운석을 사용하여 소성, 수화 및 재소성과 같은 전처리 방법을 통하여 SO2흡착제를 제조하였으며, 제조한 흡착제의 특성을 분석하기 위해서 TGA, XRD, SEM 그리고 BET분석을 수행하였다. 수화시킨 흡착제의 비표면적은 교반속도, 수화온도 및 수화시간에 비례하였으며, 초음파를 이용하여 100 ℃에서 100-120분 동안 수화시킨 흡착제의 비표면적은 50 m2/g정도로서 수화시키지 않은 흡착제보다 대략 25% 정도 증가하면서 SO2의 흡착량도 16배 정도 증가하였다. 흡착제의 입자크기가 황화반응에 미치는 영향을 고찰한 결과, 흡착제의 입자크기를 32-60 μm로 제조하였을 때의 흡착능이 가장 좋았으며, 입자크기가 32 μm이하인 흡착제는 850 ℃정도에서 소결현상으로 인해 흡착능이 감소함을 확인할 수 있었다.
Domestic dolomite sorbents for the SO2 removal were prepared and the characteristics of sorbents were investigated by TGA, XRD, SEM and BET. To improve SO2 capture capacity, the dolomite sorbents were calcined, hydrated and recalcined at various conditions. The specific surface area of hydrated sorbents increased with increasing stirring rate, hydration temperature and hydration time. In this work, the hydration process by using ultrasonic wave was conducted at the hydration temperature of 100 ℃ for the hydration time of 100-120 min. The specific surface area of sorbent hydrated at the above condition, was increased by 25%, compared to that of unhydrated sorbent and the hydrated sorbent exhibited SO2 removal capacity of 16 times higher than unhydrated sorbent. The effect of particle size for the sulfidation was examined. As a result, the highest SO2 removal capacity could be achieved at the particle size of 32-60 μm. The SO2 removal capacity of sorbent below 32 μm decreased due to sintering at about 850 ℃.
[References]
  1. Ma JX, Fang M, Lau NT, J. Catal., 163(2), 271, 1996
  2. Hibbert DB, Campbell RH, Appl. Catal., 41(1), 273, 1998
  3. Hibbert DB, Campbell RH, Appl. Catal., 41(1), 289, 1988
  4. Yoo KS, Chu KJ, Kim KT, J. of Korean Society of Environmental Engineers, 20(9), 1191, 1998
  5. Yoo KS, Jeong SM, Kim SD, HWAHAK KONGHAK, 37(2), 229, 1999
  6. Park BB, Rhee BS, HWAHAK KONGHAK, 37(2), 141, 1999
  7. Kim H, Park DW, Woo HC, Chung JS, Appl. Catal. B: Environ., 19(3), 233, 1998
  8. Lee WS, Lee HK, Jo HD, Kim SG, Kim IW, HWAHAK KONGHAK, 34(6), 700, 1996
  9. Muzio LJ, Offen GR, JAPCA, 37(5), 642, 1987
  10. Park CY, Chung SH, Cho CH, HWAHAK KONGHAK, 22(6), 355, 1984
  11. KIM H, PARK D, Korean J. Chem. Eng., 4(2), 143, 1987
  12. Alshawabkeh A, Matsuda H, Hasatani M, AIChE J., 43(1), 173, 1997
  13. Withum JA, Yoon H, Environ. Sci. Technol., 23(7), 821, 1989
  14. Bak YC, Energy Engg. J, 7(2), 216, 1998
  15. Borgwardt RH, Ind. Eng. Chem. Res., 28(4), 493, 1989
  16. Newton GH, Harrison DJ, Silcox GD, Pershing DW, Environ. Prog., 5(2), 140, 1986
  17. Christman PG, Edgar TF, AIChE J., 29(3), 388, 1983
  18. Irabien A, Cortabitarte F, Viguri J, Ortiz MI, Chem. Eng. Sci., 45(12), 3427, 1900
  19. Cho YH, Oh SC, Lee HP, Kim HT, Yoo KO, J. of Korean Society of Environmental Engineers, 21(11), 2143, 1999
  20. Hartman M, Coughlin RW, Chem. Eng. Sci., 27(5), 867, 1972
  21. Kirchgessner DA, Gullet BK, Lorrain JM, Powder Technol., 58(3), 221, 1989
  22. Howard JR, Fluidized Beds: Combustion and Applications, 1st ed., Applied Science Publishers, Barking, Essex, England, 221, 1983
  23. Dennis JS, Hayhurst AN, Chem. Eng. Sci., 42(10), 2361, 1987