Issue
Korean Chemical Engineering Research,
Vol.42, No.4, 451-457, 2004
Autoclave 내에서의 겔화 및 숙성공정에 의한 구형 BaTiO3 미분체 제조
Synthesis of BaTiO3 Powders by Gelation-Aging Method in Autoclave
본 연구에서는 겔화와 autoclave내에서의 숙성공정을 통하여 촉매를 사용하지 않고 구형의 미세한 BaTiO3전미분체를 제조하였다. 숙성온도는 결정화 공정과 제조된 입자의 크기에 영향을 미쳤다. 45 및 65 ℃ 의 숙성공정에서 제조된 미분체의 경우 미정질 상을 나타냈지만, 85 및 105 ℃ 에서 숙성하여 얻은 미분체의 경우 아나타제 TiO2와 바륨아세테이트와 유사한 결정이 공존하고 있음을 알 수 있었다. 그리고 45 및 65 ℃의 숙성공정에서 얻은 입자의 경우 결정화 공정의 중간상은 주로 Ba2Ti2O5CO3조성을 갖고 있었으나, 85 및 105 ℃에서 얻은 입자의 경우 순수한 TiO2(아나타제와 루타일)와 Ba2Ti2O5CO3상이 공존하였다. 그리고 하소 공정의 중간단계에서 Ba2Ti2O5CO3조성의 결정도가 높을수록 입자의 결정도가 향상되었다. 최종입자는 미세입자의 응집에 의하여 생성되었으며, 평균 입자크기는 45 및 65 ℃ 의 숙성에 의하여 얻어진 입자는 약 45 nm정도이며, 85 및 105 ℃ 에서 얻어진 입자는 400 nm정도의 큰 입자가 얻어졌다.
In this study, spherical pre-BaTiO3 particles are prepared by gelation and aging process in autoclave without catalysts. Aging temperature had an important effect upon the crystallization process and the particle sizes of the pre-BaTiO3 powders. The Pre-BaTiO3 particles obtained at 45 and 65 ℃ of aging temperatures were amorphous, but anatase TiO2 and pseudo-barium acetate phases were found to coexist in as prepared powders at 85 and 105 ℃. Intermediate phases of Ba2Ti2O5CO3 were formed during the thermal treatment of as-prepared powders aged at 45 and 65 ℃, but pure TiO2 phase (anatase and rutile) coexisted in the prepared powders at 85 and 105 ℃. Crystallinity of the BaTiO3 particles was enhanced as the amount of Ba2Ti2O5CO3 phases in the particles increased. The final particle are formed by aggregation of the fine particle. The average particle size was 40 nm at 45 and 65 ℃ of aging temperature, but 400 nm at 85 and 105 ℃.
[References]
  1. Kim SW, Lee MH, Noh TY, Lee C, J. Mater. Sci., 31(14), 3643, 1996
  2. Yoko T, Kamiya K, Tanaka K, J. Mater. Sci., 25, 3922, 1990
  3. Sharma HB, Mansingh A, J. Mater. Sci., 33(17), 4455, 1998
  4. Clark IJ, Takeuchi T, Ohtori N, Sinclair DC, J. Mater. Chem., 9(1), 83, 1999
  5. Ciftci E, Rahaman MN, Shumsky M, J. Mater. Sci., 36(20), 4875, 2001
  6. Hennings D, Schreinemacher S, J. European Ceram. Soc., 9(1), 41, 1992
  7. Davies JA, Dutremez A, J. Am. Ceram. Soc., 73(6), 1429, 1990
  8. Bhattacharjee S, Paria MK, Maiti SH, Ceram. Int., 18(5), 295, 1992
  9. Her YS, Matijevic E, Chon MC, J. Mater. Res., 11(12), 3121, 1996
  10. Gherardi P, Matijevic E, Colloids Surf., 32, 257, 1988
  11. Phule PP, Risbud SH, J. Mater. Sci., 25, 1169, 1990
  12. Cho WS, J. Phys. Chem. Solids, 59(5), 659, 1998
  13. Kao CF, Yang WD, Mater. Sci. Eng. B, 38(1), 127, 1996
  14. Doeuff S, Henry M, Sanchez C, Livage J, J. Non-Cryst. Solids, 89(1), 206, 1987
  15. Kakamoto K, "Infrared and Raman Spectra of Inorganic and Coordination Compounds," 5th ed., Wiley Press, New York, 1997
  16. Yoko T, Kamiya K, Tanaka K, J. Mater. Sci., 25, 3922, 1990
  17. Shaikh AS, Vwst GM, J. Am. Ceram. Soc., 69(9), 682, 1986
  18. Cho WS, J. Phys. Chem. Solids, 59(5), 659, 1998
  19. Kumar S, Messing GL, White WB, J. Am. Ceram. Soc., 76(3), 617, 1993
  20. Pechini MP, "Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Methods using the Same to Form a Capator," U.S. Patent No. 3, 330,697, 1967
  21. Little LH, Kiselev AV, Lygin VI, "Infrared Spectra of Adsorbed Species," Academic Pres, New York, 57, 1966
  22. Busca G, Buscaglia V, Leoni M, Nammi P, Chem. Mater., 6(7), 955, 1994
  23. Nakamoto K, "Infrared and Raman spectra of Inorganic and Coordination Compound," 4th ed., Wiley, New York, 1986