Issue
Korean Chemical Engineering Research,
Vol.42, No.4, 420-425, 2004
C5혼합물에서 π-착합체 형성에 의한 이소프렌 화합물의 분리
Separation of Isoprene Compounds via π-Complexation in C5 Mixtures
본 연구에서는 나프타 크래킹 과정에서 나오는 부산물인 C5혼합물로부터 부가가치성이 높은 이소프렌을 분리하기 위해 선택적인 분리 인자로서 구리 1가 이온을 이용하여 액상 분리 실험을 수행하였다. 분리 매체인 구리 1가 이온은 구리 분말 (Cu0)과 제 2 질산화 구리 삼수화물(Cu(NO3)2·3H2O, Cu2+)을 1:1몰 비율로 혼합시키고 피리딘과 질산을 첨가하여 제조하였다. Cu(I)와 이소프렌의 결합 비율을 알아보기 위해 GC를 이용하여 성분 비율을 분석하였으며, 리간드로 이용되는 피리딘과 질산의 농도를 변화시켜서 실험을 수행하였다. 실험 결과 구리 1가 이온과 이스프렌이 2:1몰 비율로 π-착합체를 형성하였다. 그리고 리간드의 농도 변화에 따라서도 이소프렌의 분리 효율이 차이가 남을 알 수 있었다. 피리딘과 질산의 당량비가 구리 1가 이온에 대해 각각 2.7/1 당량비 일 때 약 46.5 %의 수율로 이소프렌을 분리함을 알 수 있었다. 이를 통해 전이 금속인 구리를 이용하여서 알켄 뿐만 아니라 이중 결합이 두 개인 디엔도 분리 할 수 있음을 알 수 있었다.
In this work, olefin/paraffin separation was performed by using cuprous (Cu1+) ions as a selective separating agent for isoprene separation from C5 mixtures. The separating agent of cuprous (Cu1+) ion was prepared from the mixture of copper powder (Cu0) and cuprous nitrate trihydrate (Cu(NO3)2·3H2O, Cu2+) in the presence of pyridine and nitric acid as supporting agents. The mole ratio of isoprene separation was monitored by using GC and the separation with various ligand concentrations (such as pyridine and HNO3) was performed. The experimental results were shown that cuprous (Cu1+) ions were combined with diene like isoprene via the π-complexation by 2:1 molar ratio. Separation ability strongly depended on the ligand (pyridine and HNO3) concentration. When the separation was performed at Cu/pyridine/HNO3=1/2.7/1, it showed maximum performance of separation (46.5% yield). These results imply that Cu ion (Cu1+) can be used as separating agent not only for alkene(one double bond) but also for diene(two double bonds).
[References]
  1. Padin J, Yang RT, Chem. Eng. Sci., 55(14), 2607, 2000
  2. Park YK, Jeon JY, Han SY, Kim JR, Lee CW, HWAHAK KONGHAK, 41(5), 549, 2003
  3. Eldrige RB, Ind. Eng. Chem. Res., 32, 2208, 1993
  4. Safarik DJ, Eldridge RB, Ind. Eng. Chem. Res., 37(7), 2571, 1998
  5. King CJ, "Separation Processes Based on Reversible Chemical Complexation," Hand of Separation Process Technology,R. W. Rousseau, New York,J. Wiley-interscience, 1987
  6. Chang JW, Marrero TR, Yasuda HK, J. Membr. Sci., 205(1-2), 91, 2002
  7. Blas FJ, Vega LF, Gubbins KE, Fluid Phase Equilib., 150, 117, 1998
  8. Nyholm RS, Proc. Chem. Soc., 273, 1961
  9. Winston WS, Doyle G, Savage DW, Pruett RL, Ind. Eng. Chem. Res., 27, 334, 1988
  10. Seo TS, Hong DS, Jung DW, Cho HY, Woo SI, Korean J. Chem. Eng., 19(4), 622, 2002
  11. Jo YD, Ahn JH, Ihm SK, Korean J. Chem. Eng., 14(2), 125, 1997
  12. Im SW, Yu BS, Hong SI, Korean J. Chem. Eng., 10(4), 207, 1993
  13. Winstein S, Lucas HJ, J. Am. Chem. Soc., 60, 836, 1938
  14. Bochmann M, Organometallics 2: Complexes with transition metal carbon π-bonds, Oxford Univ. Press Inc., New York, 1994
  15. Mazanec TJ, "Final Report: Membrane/Distillation Hybrid Process Research and Development," U.S. DOE., July, 1997
  16. Doyle G, Pruett RL, Savage DW, Ho WSW, "Separation of Olefin Mixtures by Cu(I) Complexation," U.S. Patent No. 4,471,152, 1984
  17. Kim DM, Chang HN, Song KM, Hong WH, HWAHAK KONGHAK, 31(2), 184, 1993