Issue
HWAHAK KONGHAK,
Vol.38, No.2, 310-315, 2000
교반조 발효기와 공기부양 발효기내에서의 Phellinus linteus의 액체배양
Submerged Culture of Phellinus linteus in a Stirred Tank Fermenter and Airlift Fermenter
본 연구에서는 phellinus linteus 균사체의 대량 배양에 적합한 생물반응기의 선정과 최적 배양조건의 확립을 위하여, 연속 교반조 발효기와 공기부양 발효기에서 각각 phellinus linteus 균사체를 액체 배양함으로써 두 개의 발효기의 성능을 비교하는 한편, 통기속도(1-4L/min)와 교반기 회전속도(200-400 rpm)가 phellinus linteus의 액체 배양에 미치는 영향을 연구하였다. 회분식 배양인 경우에 건조균체량과 pH 그리고 용존산소농도는 시간이 증가함에 따라서 4단계로 변화하였으나, 각 단계가 나타나는 기간들이 서로 일치하지는 않았다. 통기속도가 증가할수록 최종 건조균체량과 용존산소농도 그리고 pH 변화의 1-3단계 동안에 pH 값은 증가하였다. 포도당의 농도는 시간에 따라 감소하였으며 통기속도와 교반기 회전속도의 포도당 농도 변화에 미치는 영향은 무시할만하였다. 최종 건조균체량은 300rpm일때가 최대였다. 교반기의 회전속도가 증가할수록 용존산소농도는 증가하였으며, 공기부양 발효기에서 보다 교반조 발효기에서 더 큰 건조균체량과 용존산소 농도가 얻어졌다.
In this study, to choose a sutiable bioreactor type for the mass culture of Phellinus linteus mycelium, we cultured Phellinus linteus mycelium using a stirred tank fermenter and an airlift fermenter and compared the performances of the two fermenters. The effects of aeration rate and agitation speed on the culture of Phellinus linteus mycelium were also investigated in the ranges of 1-4L/min, 200-300rpm, respectively. For the batch submerged culture, the dry weight of mycelium, pH, and dissolved oxygen concentration changed in four steps, respectively. But the periods of same steps were not consistent with each other. With an increase in aeration rate, the final dry weight of mycelium, dissolved oxygen concentration and pH value until the third step of pH change were increased. As the time increased, the concentration of glucose decreased. However, the effects of aeration rate and agitation speed on the variation of glucose concentration were negligible. The maximum final dry weight of mycelium was obtained when agitation speed was 300rpm. The dissolved oxygen concentration was increased with agitation speed. The dry weight of mycelium and dissolved oxygen concentration in the continuous stirred tank fermenter were larger than them those in the airlift fermenter.
[References]
  1. Ikekawa T, Nakanishi M, Uehara N, Chihara G, Fukuoka F, Gann, 59, 155, 1968
  2. Oh GT, Han SB, Kim HM, Yoo ID, Arch. Pharm. Res., 15, 379, 1992
  3. Yamana S, Hong ND, Korean Patent, 051055, 1992
  4. Yamana S, Hong ND, Korean Patent, 051056, 1992
  5. Chung KS, Ko KS, Han MW, Korean Patent, 95-7860, 1995
  6. Chung KS, Ko KS, Han MW, Korean Patent, 97-9150, 1997
  7. Yoo ID, Jung HS, Jung WJ, Ko KS, Han MW, Korean Patent, 97-1531, 1997
  8. Kim SS, M.S. Dissertation, Chungnam National Univ., Taejon, Korea, 1992
  9. Kim HK, M.S. Dissertation, Chungnam National Univ., Taejon, Korea, 1994
  10. Lee DW, M.S. Dissertation, Chungnam National Univ., Taejon, Korea, 1995
  11. Lee JH, Cho SM, Song KS, Han SB, Kim HM, Hong ND, Yoo ID, J. Microbiol. Biotechnol., 6, 213, 1996
  12. Lee JH, Cho SM, Ko KS, Yoo ID, Kor. J. Mycol., 23, 325, 1995
  13. Song KS, Cho SM. Lee JH, Kim HM, Han SB, Ko KS, Yoo ID, Chem. Pharm. Bull., 43, 2105, 1995
  14. Lee JH, Cho SM. Song KS, Han ND, Yoo ID, Chem. Pharm. Bull., 44, 1093, 1996
  15. Chisti MY, MooYoung M, Chem. Eng. Commun., 60, 195, 1987
  16. Kawagoe M, Hyakumura K, Miki K, "Bubble Columns," Preprints of 3rd German/Japanese Symposium, Schwerte, Germany, 111, 1994
  17. Kawagoe M, Nakamura Y, Noda H, Preprints of 29th Autumn Meeting of the Society of Chemical Engineers, Japan, 1996
  18. Song CH, Lee CH, Ahn JH, Hong BS, Yang HC, Kor. J. Mycol., 23(1), 53, 1995
  19. Choi KH, Korean J. Biotechnol. Bioeng., 14(2), 167, 1999
  20. Koide K, Kurematsu K, Iwamoto S, Iwata Y, Horibe K, J. Chem. Eng. Jpn., 16(5), 413, 1983
  21. Koide K, Sato H, Iwamoto S, J. Chem. Eng. Jpn., 16(5), 407, 1983
  22. Bello RA, Robinson CW, MooYoung M, Can. J. Chem. Eng., 62, 573, 1984
  23. Weiland P, Ger. Chem. Eng., 7, 374, 1984
  24. Choi KH, Han BH, Lee WK, HWAHAK KONGHAK, 28(2), 220, 1990
  25. Choi KH, Lee WK, J. Chem. Technol. Biotechnol., 56, 51, 1993
  26. Choi KH, Chem. Eng. Commun., 160, 103, 1997
  27. Choi KH, Korean J. Chem. Eng., 13(4), 379, 1996