Issue
HWAHAK KONGHAK,
Vol.37, No.6, 839-843, 1999
Multibubble Sonoluminescence를 이용한 Ni 촉매의 활성화
Activation of Nickel Catalysts under Multibubble Sonoluminescence Environment
독특한 multibubble sonoluminescence(MBSL) 환경을 이용하여 새로운 금속촉매를 활성화하였다. 일반적으로 수소화 반응에 촉매 활성을 나타내지 않는 니켈 입자가 MBSL 하에서 처리되었을 경우에 촉매 활성을 나타내었으며 이를 알켄의 수소화 반응을 통하여 조사하였다. 네 가지의 알켄 즉 사이클로헥센, 옥텐, 노넨, 데센에 대한 수소첨가 반응에서 약한 초음파의 강도(110W)를 사용하여 활성화한 니켈 촉매의 경우에는 알켄의 분자량이 적을수록 반응 수율은 높게 나타났으나 강한 초음파의 강도(193W)를 사용하여 니켈 촉매를 활성화하였을 때는 일정한 경향을 보이지 않았다. 옥텐의 수소화 반응에서는 수율이 45% 정도이어서 수소화 반응에 쓰이는 기존의 비싼 촉매를 값이 매우 저렴한 니켈로 대체할 가능성을 보여주었다.
This article deals with the activation of metal catalysts under MBSL environment and their performance tests through the hydrogenation of cyclohexene, octene, nonene and decene to their corresponding alkanes. Natural Ni is well known to exhibit no catalytic activity for the hydrogenation reaction. However, when Ni powder of 3 μm was treated under MBSL, it showed catalytic activity. When Ni catalyst was prepared in an ultrasonic field of 110 W, the hydrogenation reaction yields increased up to 18% with decreasing molecular weight. When higher intensity of 193W was used, this trend was unobserved. However, the yield for the hydrogenation of octene to octane was 45%. This result implies that Ni catalysis formed under MBSL may replace more expensive Pt or Pd catalysts, leading to catalytic process innovations.
[References]
  1. Suslick KS, Science, 247, 1439, 1990
  2. Ohl CD, Nagerl HC, Blatt R, Lauterborn W, Kurzzeit-photograph Sensonolumineszenz, 1996
  3. Suslick KS, Kemper KA, "Bubble Dynamics and Interface Problems," Blake, J.P., Boulton-Stone, J.M. and Thomas, N.H., Ed., Kluwer, Boston, 311, 1995
  4. Jarman PD, Proc. Phys. Soc., B72, 628, 1959
  5. Harvey EN, J. Am. Chem. Soc., 61, 2392, 1939
  6. Kuttruff H, Acoustica, 12, 230, 1962
  7. Walton AJ, Reynolds GT, Adv. Phys., 33, 595, 1984
  8. Crum LA, J. Acoust. Soc. Am., 95, 559, 1994
  9. Crum LA, Phys. Today, 22, 1994
  10. Barber BP, Wu CC, Lofstedt R, Roberts PH, Putterman SJ, Phys. Rev. Lett., 72, 1380, 1994
  11. Barber BP, Putterman SJ, Nature, 352, 318, 1991
  12. Hiller R, Weninger K, Putterman SJ, Barber BP, Science, 266(5183), 248, 1994
  13. Taylor AD, Jarman PD, Aust. J. Phys., 23, 319, 1970
  14. Jarman PD, J. Acoust. Soc. Am., 32, 1459, 1960
  15. Bernstein LS, Zakin MR, Flint EB, Suslick KS, J. Phys. Chem., 100(16), 6612, 1996
  16. Lindley J, "Current Trends in Sonochemistry," Price, G.J., ed., 123, 1992
  17. Suslick KS, Nature, 353, 414, 1991
  18. Mason TJ, Lorimer JP, Walton DJ, Ultrasonics, 28, 251, 1990
  19. Allen KW, Davidson RS, Zhang HS, British Patent, 90177544, 1990
  20. Allen KW, Davidson RS, Zhang HS, Proceedings of "Radtech Europe," Conference, Edinburgh, 1991
  21. Hatate Y, Ikeura T, Shininome M, Kondo K, Nakashio F, J. Chem. Eng. Jpn., 14, 38, 1981
  22. Hatate Y, Ikari A, Kondo K, Nakashio F, Chem. Eng. Commun., 34, 325, 1985
  23. Lorimer JP, Mason TJ, Fiddy K, Kershaw D, Groves R, Dodgson D, Ultrasonics International Conference Proceedings, 1283, 1989
  24. Lindley J, "Current Trends in Sonochemistry," Price, G.J., ed., 123, 1992
  25. Suslick KS, Science, 247, 1439, 1990
  26. Suslick KS, Casadonte DJ, J. Am. Chem. Soc., 109, 3459, 1987
  27. Suslick KS, Goodale JW, Schubert PF, Wang HH, J. Am. Chem. Soc., 105, 5781, 1983
  28. Lim KH, Suslick KS, Private Communication, 1998
  29. Cains PW, McCausland LJ, Bates DM, Mason TJ, Ultrason. Sonochem., 1, S45, 1994
  30. Lim KH, Mason TJ, Private Communication, 1998
  31. Suslick KS, Casadonte DJ, Doktycz SJ, Solid State Ion., 32-33, 444, 1989