Issue
HWAHAK KONGHAK,
Vol.37, No.6, 821-827, 1999
확산 화염반응기에 의한 TiO2 초미분체 제조시의 공정변수의 영향
The Effects of Process Variables in Preparing Ultrafine TiO2 Particles by a Diffusion Flame Reactor
본 연구에서는 확산 화염반응기에 의한 초미립 TiO2 분말 입자 제조공정을 이론적/실험적으로 분석하였다. 모델식에서는 TiCl4 반응물 수지식, 에어로졸 동력학식을 고려하였으며 TiCl4 반응속도, TiO2 입자의 생성 및 충돌현상을 에어로졸 동력학식에 포함시켰다. 반응기 화염온도가 증가 할수록, 초기 TiCl4 농도가 증가할수록 또는 전체 기체유량이 감소할수록 생성된 TiO2입자 크기는 증가하였다. 실험을 통해 제조된 TiO2 분말의 구조는 주로 anatase 형태로 나타났으며 전체기체 유량이 감소하거나 또는 반응기 화염온도가 증가할수록 TiO2 분말내의 rutile 함유량은 증가하였으나, 초기 TiCl4 농도와는 무관하였다. 반응기 최대 화염온도가 감소할수록 TiO2 입자의 비표면적은 증가하였다.
We have studied the process to prepare the ultrafine TiO2 powders by a diffusion flame reactor, theoretically/experimentally. In model equations, the mass balance of TiCl4 and the aerosol dynamic equation were considered. The effects. of TiCl4 chemical reaction, generation and coagulation of TiO2 particles were inclued in the aerosol dynamic equation. The TiO2 particle size increases, as the flame temperature and the inlet TiCl4 concentration increase of as the total gas flow rate decreases. The structure of TiO2 particles in experiments was basically in anafase phase and amount of rutile phase in TiO2 particles incerases as the maximum temperature increases, or as the total gas flow rate decreases. However, the amount of rutile phase in TiO2 particles was almost indepentdent of the inlet TiCl4 concentration. The specific area of TiO2 particles increases, as the flame temperature decreases.
[References]
  1. Kim KS, 2nd SIChEM Symp. Seoul, Korea, 229, 1990
  2. Okuyama K, J. Aerosol Sci., Sup., S7, 1991
  3. Pierson HO, "Handbook of Chemical Vapor Deposition," Noyes Publications, 1992
  4. Hyun BS, Kim KS, HWAHAK KONGHAK, 33(2), 183, 1995
  5. Sohn HY, Park KH, Lee KI, Chem. Ind. Technol., 7, 336, 1989
  6. Sclafani A, Palmisano L, Schiavello M, J. Phys. Chem., 94, 829, 1990
  7. Suyama Y, Kato A, J. Am. Ceram. Soc., 59, 146, 1976
  8. Pratsinis SE, Kim KS, J. Aerosol Sci., 20, 101, 1989
  9. Kim KS, Pratsinis SE, AIChE J., 34, 912, 1988
  10. Akhtar MK, Xiong Y, Pratsinis SE, AIChE J., 37, 1561, 1991
  11. Seinfeld JH, "Atmospheric Chemistry and Physics of Air Pollution," Wiley, New York, 1986
  12. Friedlander SK, "Smoke, Dust and Haze," Wiley, New York, 1977
  13. Hinds WC, "Aerosol Technology," Wiley, New York, 1982
  14. Chae BS, Kim KS, HWAHAK KONGHAK, 37(1), 1, 1999
  15. Gosman AD, Laubder BE, Reece GJ, "Computer-Aided Engineering Heat Transfer and Fluid Flow," Wiley, New York, 1985
  16. Anderson DA, Tannerhill JC, Pletcher RH, "Computational Fluid Mechanics and Heat Transfer," McGraw-Hill, New York, 1984
  17. Ferzinger JH, "Numerical Methods for Engineering Applications," Wiley, New York, 1981
  18. Fotou GP, Vemury S, Pratsinis SE, Chem. Eng. Sci., 49, 4939, 1994
  19. Fotou GP, Pratsinis SE, Baron PA, Chem. Eng. Sci., 49(10), 1651, 1994
  20. Zhu WH, Pratsinis SE, AIChE J., 43(11), 2657, 1997