Issue
HWAHAK KONGHAK,
Vol.37, No.5, 800-806, 1999
미세조류의 이산화탄소 고정화에 미치는 이산화탄소 농도의 영향
Dependence of Carbon Dioxide Concentration on Microalgal Carbon Dioxide Fixation
본 연구에서는 미세조류의 광합성능력을 이용하여 이산화탄소를 고정화하고자 할 때 문제점의 하나로 여겨지고 있는 고농도 이산화탄소에 대한 저해현상을 구체적으로 살펴보고자 하였다. 특히 이산화탄소의 전달계수를 구하여 미세조류가 성장하고 있는 동안 배지 내에서 용존 이산화탄소 농도의 변화를 정량적으로 이해하고자 하였으며, 용존 이산화탄소의 농도에 따른 고정화속도의 변화를 수식적으로 표현하였다. 먼저 공급되는 기체 중의 이산화탄소 부분압이 0.035%(v/v)일경우 조류의 성장은 이산화탄소의 전달에 의하여 제한되었으며, 2%(v/v)이상에서는 제한현상은 극복될 수 있었고 용존 이산화탄소는 평형농도 부근에서 유지되었다. 그러나 혼합기체의 이산화탄소 부분압이 10%(v/v) 이상일 경우에는 용존 이산화탄소에 의하여 저해현상이 발견되었다. 이러한 저해현상을 정량적으로 기술하기 위하여 고정화속도를 용존 이산화탄소의 함수로 하는 경헙식을 도입하였으며 이는 광생물반응기의 운전조건에 독립적인 것으로 폭넓은 활용이 가능할 것이다. 또한 고농도 이산화탄소에 의한 저해현상은 가역적임을 실험적으로 입증하였으며 이는 생물학적 이산화탄소 고정화 공정이 단기적인 고농도 이산화탄소에 의한 총격에 유연함을 보여주고 있다. 따라서 본 연구의 결과는 이산화탄소의 전달현상 및 농도에 따른 활성저해 현상을 이해하고 이를 수학적으로 기술함으로써 향후 광생물반응을 모델링하고 운전변수를 최적화하는데 기여할 수 있을 것으로 판단된다.
Batch cultivation of Chlorella vulgaris was carried out under various CO2 concentrations in order to understand and describe mathmatically the CO2 inhibition of microalgal CO2 fixation. The volumetric CO2 transfer coefficient from mixture gas to culture medium was estimated from the volumetric O2 transfer coefficient obtained experimentally. Using this transfer coefficient and aquatic equilibrium relationship between dissolved inorganic carbons, the behavior of dissolved CO2 was calculated during microalgal culture. When air containing 0.035%(v/v) CO2 was supplied into microalgal culture, the fixation rate was limited by CO2 transfer rate. However, the limitation was disppeared by supplying mixture gas containing above 2%(v/v) CO2 and the dissolved CO2 concentration was maintained at the saturated value. In the range of CO2 partial pressure in the flue gases from thermal power stations and steel-making plants, the microalgal CO2 fixation rate was inhibited. The CO2 fixation rate was succesfully formulated by a new empirical equation as a function of dissolved CO2 concentration, which could be useful for modeling and simulating performance of photobioreaction with enriched CO2. Also, it was found that the CO2 inhibition of microalgal CO2 fixation was reversible and that microalgal CO2 fixation process could be stable against a shock of unusually high CO2 concentration.
[References]
  1. Schneider SH, Science, 243, 771, 1989
  2. Karube T, Takeuchi T, Barnes DJ, Adv. Biochem. Eng. Biotechnol., 46, 63, 1992
  3. Hall DO, House JI, Energy Conv. Manag., 34, 889, 1993
  4. Davison JE, Freund D, A Comparison of Sequestration of CO2 by Forestry and Capture from Power Stations, Presented in the Fourth International Conference on Greenhouse Gas Control Technologies, Switzerland, 1998
  5. Riemer WO, Smith A, "Carbon Dioxide Utilization," IEA Greenhouse Gas R&D Programme, Stoke Orchard, Cheltenham, UK, 1995
  6. Takeuchi T, Utsunomia K, Kobayashi K, Owada M, Karube I, J. Biotechnol., 25, 261, 1992
  7. Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I, Phytochemistry, 31, 3345, 1992
  8. Kodama M, Ikemoto H, Miyachi S, J. Mar. Biotechnol., 1, 21, 1993
  9. Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K, J. Ferment. Bioeng., 82(4), 351, 1996
  10. Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S, Appl. Biochem. Biotechnol., 39-40, 643, 1993
  11. Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hirayama K, Matuzaki H, Tukamoto T, Sasaki S, Appl. Biochem. Biotechnol., 45-46, 799, 1994
  12. Matunaga T, Takeyama H, Sudo H, Oyama N, Ariura S, Takano H, Hirano M, Burgess JG, Sode K, Nakamura N, Appl. Biochem. Biotechnol., 28-29, 157, 1991
  13. Takano H, Takeyama H, Nakamura N, Sode K, Burgess JG, Manabe E, Hirano M, Matunaga T, Appl. Biochem. Biotechnol., 34-35, 449, 1992
  14. Lee JS, Sung KD, Kim MS, Park SC, Lee KW, Preprints of the Division of Fuel Chemistry of the American Chemical Society, 41, 1397, 1996
  15. Sung KD, Lee JS, Shin CS, Park SC, Renewable Energy, 16, 1019, 1999
  16. Yun YS, Park JM, Yang JW, Biotechnol. Tech., 10, 713, 1996
  17. Yun YS, Park JM, Korean J. Chem. Eng., 14(4), 297, 1997
  18. Yun YS, Lee SB, Park JM, Lee CI, Yang JW, J. Chem. Technol. Biotechnol., 70, 451, 1997
  19. Yun YS, Lim SR, Cho KK, Park JM, Biotechnol. Lett., 19(9), 831, 1997
  20. Yun YS, Park JM, Volesky B, Korean J. Biotechnol. Bioeng., 14, 328, 1999
  21. Starr RC, Zeikus JA, J. Phycol., 29, 1, 1993
  22. Vonshak A, "Handbook of Microalgal Mass Culture," Richmond, A. ed., CRC Press, FL, 117, 1986
  23. Shuler ML, Kargi F, "Bioprocess Engineering: Basic Concepts," Prentice-Hall Inc., Englewood Cliffs, NJ, 1992
  24. Talbot P, Gortares MP, Lencki RW, de la Noue J, Biotechnol. Bioeng., 37, 834, 1991
  25. Lee CG, Ph.D. Dissertation, The University of Michigan, Ann. Arbor, 1994
  26. Stumm W, Morgan JJ, "Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters," 3rd ed., John Wiley & Sons, Inc, NY, 1996
  27. Aiba S, Adv. Biochem. Eng., 23, 85, 1982
  28. Tolbert NE, Preiss J, "Regulation of Atmospheric CO2 and O2 by Photosynthetic Carbon Metabolism," Oxford University Press, UK, 1994
  29. Eriksson M, Karlsson J, Villand P, Ramazanov Z, Gardestrer P, Samuelsson G, "A Mitochondrial Carbonic Anhydrase is Induced by Low CO2," Proceeding of the 7th International Conference on the Cell and Molecular Biology of Chlamydomonas, Regensburg, Germany, 1996