Issue
HWAHAK KONGHAK,
Vol.36, No.3, 369-374, 1998
상압에서 합성된 ZSM-5의 물리 화학적 특성 및 프로펜의 전환반응
Physico-Chemical Characteristics of the ZSM-5 Crystallized at Atmospheric Pressure and Conversion of Propene on the ZSM-5
상압하에서 60시간 동안 합성시킨 ZSM-5(Si/Al2≃70)의 결정은 구조적으로 안정하였으며 결정전체의 Si/Al의 몰비가 표면의 Si/Al의 몰비보다 1.24배 정도 작아 표면보다는 결정내부에서 알루미늄의 농도가 높은 것을 알 수 있었다. 또한 비표면적은 상업적으로 이용되는 ZSM-5(Si/Al2≃80)보다 50m2/g이 더 큰 것으로 나타났다. DTA분석 결과 1,100℃에서 구조의 파괴가 일어나 열적 안정성이 우수한 것으로 나타났다. 400, 450 및 500℃와 GHSV=1,300h-1의 조건에서 각각 프로펜의 전환반응을 시킨 결과 방향족 화합물의 선택도는 온도의 영향을 크게 받지 않는 것으로 나타났으나, 방향족 생성물의 분포는 많은 차이를 보여 주었다. 500℃에서 20.5시간 동안 촉매의 활성을 살펴 본 결과 프로펜의 전환율은 1.5%정도 줄어들었으나 방향족 화합물의 선택도는 42wt%로 유지되었다.
The ZSM-5(Si/Al2≃70) crystallized at atmospheric pressure for 60h was stable in structure. Concentration of aluminium at the inner of crystalline was higher than that at the surface. Compared with commercial ZSM-5(Si/Al2≃80, PQ), the surface area of ZSM-5 synthesized in this study was larger by 50m2/g. Based on the result of DTA, thermal stability of this ZSM-5 was so excellent that it was not destructed up to 1,100℃. Conversion of propane into aromatics was performed at 400, 450, and 500℃ with GHSV=1,300h-1. As the result, selectivity of total aromatics was changed slightly at these temperatures, but distributions of produced aromatics were very different. Activity of this ZSM-5 was studied at 500℃ for 20.5h. The result showed that the selectivity of aromatics was maintained about 42wt% consistently but the conversion of propene was decreased by about 1.5%.
[References]
  1. Meisel SL, McCullough JP, Lechthaler CH, Weisz PB, Chem. Tech., 6, 86, 1976
  2. Bhatia S, "Zeolite Catalysis: Principles and Applications," CRC Press, Inc., 1990
  3. Petunchi JO, Keith Hall W, Appl. Catal. B: Environ., 2, L17, 1993
  4. Neyestanaki AK, Kumar N, Lindfors LE, Appl. Catal. B: Environ., 7(1-2), 95, 1995
  5. Greene HL, Prakash DS, Athota KV, Appl. Catal. B: Environ., 7(3-4), 213, 1996
  6. Argauer G, Landolt R, U.S. Patent, 3,702,886, 1972
  7. Suzuki K, Kiyozumi Y, Matsuzaki K, Shin S, Appl. Catal., 58, 114, 1979
  8. Kiyozumi Y, Suzuki K, Shin S, Okado N, Noguchi K, U.S. Patent, 4,579,994, 1986
  9. Kiyozumi Y, Shin S, Shul YG, Ihm SK, Koo KK, Korean J. Chem. Eng., 13(2), 144, 1996
  10. Kim WJ, Lee MC, Kim JW, Ha JM, J. Korean Ind. Eng. Chem., 8(2), 320, 1997
  11. Engelhardt G, Miche D, "High-Resolution Solid-State NMR of Silicates and Zeolites," John Wiley & Sons, Ltd., 1987
  12. Debras G, Gourgue A, Nagy JB, De Clippelcir G, Zeolites, 5, 369, 1985
  13. Wang DZ, Lu XD, Dou XY, Li WB, Yang CH, Appl. Catal., 59, 75, 1990
  14. Inui T, Kim JB, Takequchi T, Appl. Catal. A: Gen., 106, 83, 1993
  15. Anderson JR, Chang YF, Western RJ, J. Catal., 118, 466, 1989