Issue
HWAHAK KONGHAK,
Vol.35, No.6, 921-927, 1997
수평으로 인접한 유체층과 공극률이 변하는 다공질층에서 열적 불안정성
Thermal Instabilities in Horizontally Superposed Fluid and Porous Layer with Variable Porosity
수평을로 인접하고 있는 유체층과 유체로 포화된 다공질층이 밑면으로부터 가열되고 있는 계에 대해 다공질층의 공극률의 변화를 고려하여 자연대류의 임계조건을 조사하였다. 선형안정성 이론을 적용하여 다공질층의 깊이와 다공질층을 구성하는 입자직경의 비 dm/dp, 다공질층과 유체층 깊이의 비 ^d가 대류발생 임계조건에 주는 영향을 수치해법으로 구하였다. dm/dp가 103보다 작을 때에는 공극률의 변화로 인해 임계조건이 영향받는다는 결과를 얻었다. ^d가 큰 경우에는 대류발생은 다공질층이 지배적이며 dm/dp가 감소함에 따라 임계 Darcy-Rayleight 수는 감소하였다. 이는 다공질층의 입자 직경이 커짐에 따라 벽면에서의 공극률이 증가하여 유동이 더 자유로워지기 때문에 다공질층이 열적으로 더 불안정해짐을 나타낸다.
The critical conditions to mark the onset of natural convection in the horizontally superposed fluid and porous layer, cooled from below, with variable porosity were investigated. By using the linear stability theory the effects of dm/dp(ratio of porous layer thickness to particle diameter) and ^d(ratio of porous layer thickness to fluid layer thickness) on the critical conditions are obtained numerically. The results show that the critical conditions are influenced by the variation of porosity when the value of dm/dp is smaller than 103. For large values of ^d the onset of convection is dominant in the porous layer and the critical Darcy-Rayleigh number decreases with decreasing the vale of dm/dp. It means that as the particle diameter becomes larger, the porosity becomes larger near the surface and the fluid inthe porous layer becomes more mobile, i.e., more unstable.
[References]
  1. Benard H, Ann. Chem. Phys., 23, 62, 1901
  2. Rayleigh L, Philos. Mag., 32, 529, 1916
  3. Horton CW, Rogers FT, J. Appl. Phys., 16, 367, 1945
  4. Lapwood ER, Proc. Camb. Phil. Soc., 44, 508, 1948
  5. Nield DA, J. Fluid Mech., 81, 513, 1977
  6. Nield DA, J. Fluid Mech., 128, 37, 1983
  7. Beavers GS, Joseph DD, J. Fluid Mech., 30, 197, 1967
  8. Pillatsis G, Taslim ME, Narusawa U, J. Heat Transf., 109, 677, 1987
  9. Taslim ME, Narusawa U, J. Heat Transf., 111, 357, 1989
  10. Chen F, Chen CF, Pearlstein AJ, Phys. Fluids, A3, 556, 1991
  11. Vortmeyer D, Schuster J, Chem. Eng. Sci., 38, 1691, 1983
  12. Cheng P, Vormeyer D, Chem. Eng. Sci., 43, 2523, 1988
  13. Mueller GE, Chem. Eng. Sci., 46, 706, 1991
  14. Chandrasekhara BC, Namboodiri PMS, Hanumanthappa AR, Warme-Stoffubertrag., 18, 17, 1984
  15. Zehner P, Schlunder EU, Chem. Ing. Tech., 42, 933, 1970
  16. Kunii D, Smith JM, AIChE J., 6, 71, 1960
  17. Schlunder EU, Chem. Ing. Tech., 38, 967, 1958
  18. Chandrasekhara BC, Namboodiri PMS, Int. J. Heat Mass Transf., 28, 199, 1985
  19. Hong JT, Yamada Y, Tien CL, J. Heat Transf., 109, 356, 1987
  20. Jang JY, Chen JL, Int. J. Heat Mass Transf., 36, 1573, 1993
  21. Kim DS, Cho ES, Choi CK, Korean J. Chem. Eng., 11(3), 190, 1994
  22. Chen F, Chen CF, J. Fluid Mech., 207, 311, 1989
  23. Tait S, Jaupart C, J. Geophys. Res., 97, 6735, 1992