Issue
HWAHAK KONGHAK,
Vol.33, No.5, 598-604, 1995
2-Propanol 탈수소화 반응의 속도론적 고찰
A Kinetic Study of the Dehydrogenation of 2-Propanol
Ru를 활성탄과 알루미나에 침적시킨 촉매를 사용하여 미분 반응기에서 2-propanol의 탈수소화 반응 속도식을 구하였다. r=kp*Cp(1+KA*CA)의 속도식을 가정하였으며, 기상과 액상에서의 반응 속도식을 각각 구하였다. 온도의 영향을 살펴보기 위하여 kp=ko exp(-E/RT)를 가정하였다. Acetone의 흡착평형상수 K4도 온도의 함수이지만 각 실험온도에성의 평형상수를 계산하면 변화가 매우 작으므로 상수로 가정하여 평균값을 취하였다. 기상반응의 속도가 액상반응의 경우보다 빠르며, acetone의 농도가 증가할수록 반응속도가 감소하였다. 계산된 반응속도식을 사용하여 2-
propanol 탈수소화반응에서 온도와 acetone 농도의 영향을 표현할 수 있었다.
The rate of dehydrogenation of-2propanol was obtained using a differential flow reactor over ruthenium catalysts supported on alumina and activated carbon. The reaction rate was derived as r=kp*Cp/(1+KA*CA), which was calculated on gas phase and liquid phase reactions. In order to consider the effect of reaction temperature, kp=k0 exp(-E/RT) was assumed. The equilibrium constant, KA, of acetone adsorption was assumed to be constant because the variation was small over the narrow temperature range. The reaction rate of gas phase was faster than that of liquid phase, and it was decreased as the concentration of acetone increased. The rate equation could express the effect of temperature and acetone concentration on 2-propanol dehydrogenation reaction.
[References]
  1. Kim TK, Yeo YK, Song HK, Int. J. Energy Res., 16, 897, 1992
  2. 김태경, 여영구, 송형근, 한국수소에너지학회지, 3, 17, 1992
  3. Ito E, Yamashita M, Hagiwara S, Saito Y, Chem. Lett., 351, 1991
  4. Yamashita M, Kawamura T, Suzuki M, Saito Y, Bull. Chem. Soc. Jpn., 64, 272, 1991
  5. Saito Y, Kameyama H, Yoshida K, Int. J. Energy Res., 11, 549, 1987
  6. Mears DE, Boudart M, AIChE J., 12, 313, 1966
  7. Mears DE, Benson JE, J. Chem. Edu., 43, 325, 1966
  8. Radha R, Swamy CS, React. Kinet. Catal. Lett., 30, 193, 1986
  9. Arakawa H, Yoshihiro S, Chem. Lett., 1323, 1981
  10. Kolboe S, J. Catal., 13, 208, 1969