Issue
HWAHAK KONGHAK,
Vol.32, No.2, 187-194, 1994
내부 열원에 의해 가열되는 수평 다공질 유체층에서의 부력에 의한 자연대류 발생 및 열전달 상관관계
Onset of Buoyancy-Driven Convection and Heat Transfer Correlation in Internally Heated Horizontal Porous Layers
유체로 포화되어 있는 초기 정지상태의 수평 다공 매질층이 내부 열원에 의해 가열될 때, 시간 의존형 온도분포하에서 부력에 의한 열적 불안정성 문제를 이론적으로 해석하였다. 유동현상을 해석하기위하여 Darcy법칙을 사용하였으며, 안정성 해석은 선형 안정성 이론과 안정성 교환 원리하에서 열 침투깊이를 새로운 길이차원으로 하는 전파이론을 적용하여 행하였다. 본 연구에서 고려되는 계에서 부력에 의한 대류 발생시점은 Darcy-Ray-leigh수에 의하여 결정되었으며, Darcy-Rayleigh 수가 클수록 자연대류는 빨리 발생함을 알 수 있었다. 또, 자연대류 발생 임계 시점을 근거로 열전달 상관식을 유도하여 기존의 실험결과를 합리적으로 설명하였다.
A theoretical analysis of thermal instability driven by buoyant forces under transient temperature fields is conducted in an initially quiescent, fluid-saturated, horizontal porous layer. Darcy’s law is used to explain characteristics of fluid motion and linear theory is employed. Under the principle of exchange of stabilities, the stability analysis is conducted by using propagation theory which adopts the thermal penetration depth as a characteristic length scaling factor. The critical conditon of onset of buoyancy-driven natural convection is governed by the Darcy-Rayleigh number, as expected. It is shown that the larger Darcy-Rayleigh number becomes, the earlier convective motion sets in. Based on the present critical condition to the onset of natural convection, a new heat transfer correlation is proposed. The prediction agrees well with experimental results.
[References]
  1. Benard H, Annu. Chem. Phys., 23, 62, 1901
  2. Rayleigh L, Philos. Mag., 32, 529, 1916
  3. Horton CW, Rogers FT, Appl. Phys., 16, 367, 1945
  4. Lapwood ER, Proc. Camb. Phil. Soc., 44, 508, 1948
  5. Katto Y, Matsuoka T, Int. J. Heat Mass Transf., 10, 297, 1967
  6. Foster TD, Phys. Fluids, 8, 1249, 1965
  7. Wankat PC, Homsy GM, Phys. Fluids, 20, 1200, 1977
  8. Jhavary BS, Homsy GM, J. Fluid Mech., 114, 251, 1982
  9. Choi CK, Shin CB, Hwang ST, Proc. 8th Int. Heat Transfer Conf., San Fransisco, Vol. 3, 1389, 1986
  10. Lee JD, Choi CK, Shin CB, Int. Chem. Eng., 30, 761, 1988
  11. Yoon DY, Ph.D. Thesis, Seoul National University, Seoul, Korea, 1990
  12. Kim MC, Choi CK, Davis EJ, Int. J. Eng. Fluid Mech., 3, 71, 1990
  13. Chun YH, Choi CK, HWAHAK KONGHAK, 29(3), 381, 1991
  14. Stuart JT, J. Fluid Mech., 18, 481, 1964
  15. Landau LD, Lifshitz EM, "Fluid Mechanics," Pergamon Press, Oxford, England, 1959
  16. Howard LN, Proc. 11th Int. Congress Appl. Mech., Munich, 1109, 1964
  17. Long RR, J. Fluid Mech., 73, 445, 1976
  18. Cheung FB, J. Fluid Mech., 97, 734, 1980
  19. Choi CK, Lee JD, Hwang ST, Yoo JS, "Frontiers on Fluid Mechanics (ed. by Shen Yuen)," Pergamon Press, Oxford, England, 1193, 1988
  20. Yoon DY, Choi CK, Korean J. Chem. Eng., 6(2), 144, 1989
  21. Choi CK, Jang CS, Kim MC, Yoon DY, "Heat Transfer: 3rd UK National Conference Incorporating 1st European Conference on Thermal Science," I. Chem. E., England, 467, 1992
  22. Kim MC, Ph.D. Thesis, Seoul National Univ., Seoul, Korea, 1992
  23. Davenport IF, King CJ, Int. J. Heat Mass Transf., 17, 69, 1974
  24. Foster TD, Phys. Fluids, 12, 2482, 1969
  25. Kaviany M, J. Heat Transf., 106, 817, 1984
  26. Tveitereid M, Int. J. Heat Mass Transf., 20, 1045, 1977
  27. Buretta RJ, Berman AS, J. Appl. Mech., 98, 249, 1976
  28. Kulacki FA, Freeman RG, J. Heat Transf., 101, 169, 1979
  29. Sun W, Ph.D. Thesis, University of Minnesota, 1973
  30. Rhee SJ, Dhir VK, Catton I, J. Heat Transf., 100, 78, 1978
  31. Hardee HC, Nilson RH, Nucl. Sci. Eng., 63, 119, 1977