Issue
HWAHAK KONGHAK,
Vol.40, No.2, 146-151, 2002
이리듐 산화물 전극의 유기물 분해 성능 개선
Performance Improvement of Ir Oxide Electrode for Organic Destruction
본 연구에서는 유기물 분해를 위한 IrO2 전극을 고온 소결시킴으로써 성능을 향상시켰으며, 이 전극의 재료적, 전기화학적 특성 및 유기물 분해능 특성이 전극 표면저항, TGA, XPS, AES, voltammogram과 4CP 분해의 TOC를 측정함으로써 평가되었다. 문헌에 나타나 있는 Ir 산화물 전극 제조 소결온도 범위인 400-550 ℃를 넘는 650 ℃에서 전극의 소결은 코팅 용액의 IrCl3을 충분히 IrO2로 전환시켜 유기물 분해 성능을 증진시켰다. 또한 고온 소결 시 Ti 지지체가 산화되어 TiO2가 전극 표면으로 고체 확산되고 이로 인한 전극 표면의 저항 증가 및 전극 활성 감소를 억제시키기 위하여 TiO2-screening 층을 Ti 모재와 최종 Ir 산화물 전극 층 사이에 삽입시키는 경우, 유기물 분해율은 더욱 증진하여 기존의 Ir 산화물 전극에서의 4CP 분해율보다 약 4배 정도 증가하였으며, 유기물 용액에 염소이온이 공존할 경우 RuO2 전극에서의 유기물 분해율과 동등한 성능을 보였다.
This study has carried out a performance improvement of IrO2 electrode for the purpose of organic destruction by sintering the electrode at a high temperature, and the material, electrochemical, and organic destruction properties of the electrode were evaluated by measurements of surface resitivity, TGA, XPS, AES, voltammogram, and TOC of 4CP destruction. A sintering temperature of around 650 ℃ rather than 400-550 ℃ suggested in the literatures for fabrication of Ir oxide electrode enhanced the organic destruction yield because IrCl3 of the precursor solution on electrode surface was sufficiently converted to IrO2. An additional oxide layer between IrO2 layer and Ti substrate, to prevent a solid diffusion of TiO2 due to oxidation of Ti substrate during high-temperature sintering, improved the organic destruction further so that the 4CP destruction yield raised to about 4 times higher than that by the conventional Ir oxide electrode. The destruction yield of 4CP solution with chloride ion at the improved electrode increased as much as that by RuO2 electrode in the same solution.
[References]
  1. Rajeshwar K, Ibanez JG, "Environmental Electrochemistry," Academic press Inc., London, 1997
  2. Scott K, "Electrochemical Process for Clean Technology," The Royal Society of Chemistry, U.K, 1995
  3. Kinoshida K, "Electrochemical Oxygen Technology'" John Willey & Sons, Inc., N.Y., 1992
  4. Trasatti S, "Electrode of Conductive Metallic Oxyides," Part A, Elservier Sci. Pub. Co., Amsterdam, 1980
  5. Trasatti S, Electrochim. Acta, 29, 1504, 1984
  6. Comniellis C, Electrochim. Acta, 39, 1857, 1994
  7. Boodts JFC, Trasatti S, J. Electrochem. Soc., 137, 3784, 1990
  8. Battisti AD, Lodi G, Cappadonia M, Battaglin G, Kotz R, J. Electrochem. Soc., 136(6), 2596, 1989
  9. Krysa J, Kule L, Mraz R, Rousar I, J. Appl. Electrochem., 36, 1996, 1996
  10. Silva LD, Alves VA, da Silva MAP, Trasatti S, Boots JFC, Can. J. Chem., 75, 1483, 1997
  11. Kotz R, Lewerenz HJ, Stucki S, J. Electrochem. Soc., 130, 825, 1983
  12. Pilla AS, Cobo EO, Duarte MM, Salinas DR, J. Appl. Electrochem., 27(11), 1283, 1997
  13. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, Electrochim. Acta, 46(6), 915, 2001
  14. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, J. Electrochem. Soc., 148(3), B111, 2001
  15. Alves VA, da Silva LA, Boodts JFC, Electrochim. Acta, 44(8-9), 1525, 1998
  16. Comninellis C, Vercesi GP, J. Appl. Electrochem., 21, 335, 1991
  17. Lassali TAF, Bulhoes LOS, Abeid LMC, Boodts JFC, J. Electrochem. Soc., 144(10), 3348, 1997
  18. Comninellis C, Nerini A, J. Appl. Electrochem., 25(1), 23, 1995
  19. Rodgers JD, Jedral W, Bunce NJ, J. Environ. Sci. Tech., 33, 1453, 1999
  20. Freeman HM, "Physcial/Chemical Process," Technomic Pub. Co., Pennsylvania, 2, 165, 1990
  21. Sequeira CAC, "Enviromental Orientel Electrochemistry," Elsevier, N.Y., 1994
  22. Kim KW, Lee EH, Kim JS, Choi JG, Shin KH, Lee SH, Kim KH, HWAHAK KONGHAK, 38(6), 774, 2000
  23. Kim KW, Lee EH, Kim JS, Shin KH, Kim KH, HWAHAK KONGHAK, 39(2), 138, 2001
  24. Dasilva LA, Alves VA, Dasilva MA, Trasatti S, Boodts JF, Electrochim. Acta, 42(2), 271, 1997
  25. Kuhn AT, Mortimer CJ, J. Appl. Electrochem., 2, 283, 1972
  26. Sequeira CAC, "Environmental Oriented Electrochemistry," Elsevier, N.Y., 1994
  27. Tilak BV, Tari K, Hoover CL, J. Electrochem. Soc., 135, 1386, 1988
  28. Kuhn AT, Mortimer CJ, J. Appl. Electrochem., 2, 283, 1972